Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-06T05:07:12.711Z Has data issue: false hasContentIssue false

COIDEMPOTENT SUBCOALGEBRAS AND SHORT EXACT SEQUENCES OF FINITARY 2-REPRESENTATIONS

Published online by Cambridge University Press:  19 March 2020

AARON CHAN
Affiliation:
Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, Japan email [email protected]
VANESSA MIEMIETZ
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK email [email protected]

Abstract

In this article, we study short exact sequences of finitary 2-representations of a weakly fiat 2-category. We provide a correspondence between such short exact sequences with fixed middle term and coidempotent subcoalgebras of a coalgebra 1-morphism defining this middle term. We additionally relate these to recollements of the underlying abelian 2-representations.

Type
Article
Copyright
© 2020 Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brzezinski, T. and Wisbauer, R., Corings and Comodules, LMS Lecture Note Series 309, Cambridge University Press, Cambridge, 2003.10.1017/CBO9780511546495CrossRefGoogle Scholar
Buchweitz, R.-O. and Ragnar-Olaf, “Morita contexts, idempotents, and Hochschild cohomology—with applications to invariant rings”, in Commutative Algebra (Grenoble/Lyon, 2001), Contemporary Mathematics 331, American Mathematical Society, Providence, RI, 2003, 2553.10.1090/conm/331/05901CrossRefGoogle Scholar
Chan, A. and Mazorchuk, V., Diagrams and discrete extensions for finitary 2-representations, Math. Proc. Cambridge Philos. Soc. 166(2) (2019), 325352.10.1017/S0305004117000858CrossRefGoogle Scholar
Chuang, J. and Rouquier, R., Derived equivalences for symmetric groups and sl2 -categorification, Ann. of Math. (2) 167(1) (2008), 245298.CrossRefGoogle Scholar
Elias, B. and Williamson, G., Soergel calculus, Represent. Theory 20 (2016), 295374.10.1090/ert/481CrossRefGoogle Scholar
Franjou, V. and Pirashvili, T., Comparison of abelian categories recollements, Doc. Math. 9 (2004), 4156.Google Scholar
Freyd, P., “Representations in abelian categories”, in Proc. Conf. Categorical Algebra (La Jolla, CA, 1965), Springer, New York, 1966, 95120.10.1007/978-3-642-99902-4_4CrossRefGoogle Scholar
Khovanov, M. and Lauda, A., A categorification of a quantum sln, Quantum Topol. 1 (2010), 192.CrossRefGoogle Scholar
Kildetoft, T., Mackaay, M., Mazorchuk, V. and Zimmermann, J., Simple transitive 2-representations of small quotients of Soergel bimodules, Trans. Amer. Math. Soc. 371(8) (2019), 55515590.CrossRefGoogle Scholar
Licata, A. and Savage, A., Hecke algebras, finite general linear groups, and Heisenberg categorification, Quantum Topol. 4(2) (2013), 125185.CrossRefGoogle Scholar
Leinster, T., Basic bicategories, preprint, 1998, arXiv:math/9810017.Google Scholar
Mackaaij, M. and Tubbenhauer, D., Two-color Soergel calculus and simple transitive 2-representations, Canad. J. Math. 71(6) (2019), 15231566.10.4153/CJM-2017-061-2CrossRefGoogle Scholar
Mackaay, M. and Mazorchuk, V., Simple transitive 2-representations for some 2-subcategories of Soergel bimodules, J. Pure Appl. Algebra 221(3) (2017), 565587.10.1016/j.jpaa.2016.07.006CrossRefGoogle Scholar
MacKaay, M., Mazorchuk, V., Miemietz, V. and Tubbenhauer, D., Simple transitive 2-representations via (co)algebra 1-morphisms, Indiana Univ. Math. J. 68(1) (2019), 133.CrossRefGoogle Scholar
MacKaay, M., Mazorchuk, V., Miemietz, V., Tubbenhauer, D. and Zhang, X., 2-representations of Soergel bimodules, preprint, 2019, arXiv:1906.11468.Google Scholar
MacKaay, M., Mazorchuk, V., Miemietz, V. and Zhang, X., Analogues of centralizer subalgebras for fiat 2-categories and their 2-representations, J. Inst. Math. Jussieu 137; doi:10.1017/S1474748018000555.Google Scholar
Mac Lane, S., Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics, 5, Springer, New York, 1998.Google Scholar
Mazorchuk, V. and Miemietz, V., Cell 2-representations of finitary 2-categories, Compos. Math. 147 (2011), 15191545.CrossRefGoogle Scholar
Mazorchuk, V. and Miemietz, V., Additive versus abelian 2-representations of fiat 2-categories, Mosc. Math. J. 14(3) (2014), 595615.10.17323/1609-4514-2014-14-3-595-615CrossRefGoogle Scholar
Mazorchuk, V. and Miemietz, V., Endomorphisms of cell 2-representations, Int. Math. Res. Not. IMRN 24 (2016), 74717498.CrossRefGoogle Scholar
Mazorchuk, V. and Miemietz, V., Morita theory for finitary 2-categories, Quantum Topol. 7(1) (2016), 128.CrossRefGoogle Scholar
Mazorchuk, V. and Miemietz, V., Transitive representations of finitary 2-categories, Trans. Amer. Math. Soc. 368(11) (2016), 76237644.CrossRefGoogle Scholar
Mazorchuk, V. and Miemietz, V., Isotypic faithful 2-representations of 𝓙-simple fiat 2-categories, Math. Z. 282(1) (2016), 411434.CrossRefGoogle Scholar
Mazorchuk, V., Miemietz, V. and Zhang, X., Pyramids and 2-representations, Rev. Mat. Iberoam., doi:10.4171/rmi/1133.CrossRefGoogle Scholar
Mazorchuk, V. and Zhang, X., Simple transitive 2-representations for two non-fiat 2-categories of projective functors, Ukrainian Math. J. 70(12) (2019), 18731900.CrossRefGoogle Scholar
Năstăsescu, C. and Torrecillas, B., Torsion theories for coalgebras, J. Pure Appl. Algebra 97(2) (1994), 203220.10.1016/0022-4049(94)00009-3CrossRefGoogle Scholar
Psaroudakis, C., Homological theory of recollements of abelian categories, J. Algebra 398 (2014), 63110.10.1016/j.jalgebra.2013.09.020CrossRefGoogle Scholar
Psaroudakis, C. and Vitoria, J., Recollements of module categories, J. Appl. Categor. Struct. 22(4) (2014), 579593.10.1007/s10485-013-9323-xCrossRefGoogle Scholar
Rouquier, R., 2-Kac–Moody algebras, preprint, 2008, arXiv:0812.5023.Google Scholar
Shan, P., Varagnolo, M. and Vasserot, E., On the center of quiver-Hecke algebras, Duke Math. J. 166(6) (2017), 10051101.CrossRefGoogle Scholar
Zhang, X., Simple transitive 2-representations and Drinfeld center for some finitary 2-categories, J. Pure Appl. Algebra 222(1) (2018), 97130.CrossRefGoogle Scholar
Zimmermann, J., Simple transitive 2-representations of Soergel bimodules in type B 2, J. Pure Appl. Algebra 221(3) (2017), 666690.CrossRefGoogle Scholar
Zimmermann, J., Simple transitive 2-representations of some 2-categories of projective functors, Beitr. Algebra Geom. 59(1) (2018), 4150.10.1007/s13366-017-0348-4CrossRefGoogle Scholar