Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:39:01.949Z Has data issue: false hasContentIssue false

A Categorical setting for Determinants and Traces

Published online by Cambridge University Press:  22 January 2016

Helmut Röhrl*
Affiliation:
University of California, San Diego, and Princeton University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper is to investigate some applications of a certain universal problem. The universal problem deals with categories C which for every object A have some ‘‘structure” on the set C(A, A) of endomorphisms of A and calls for a universal solution, relative to this structure, that is associated with C(A, A) and centralizes the set of automorphisms of A. The commutative version of this universal problem asks for a universal solution, relative to the said structure, that abelianizes the canonical monoid structure of C(A, A).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1969

References

[1] Artin, E., Geometric Algebra. Interscience Publ., New York 1957.Google Scholar
[2] Auslander, M. and Goldman, O., Maximal Orders. Trans. AMS 97 (1960), 124.CrossRefGoogle Scholar
[3] Bass, H., K-Theory and Stable Algebra. Publ. math. IHES, No. 22 (1964), 489544.Google Scholar
[4] Bourbaki, N., Eléments de Mathématique. Algèbre, Chap. 1, Hermann, Paris 1958.Google Scholar
[5] Bourbaki, N. Eléments de Mathématique. Algèbre, Chap. 2, Hermann, Paris 1962.Google Scholar
[6] Bourbaki, N. Eléments de Mathématique. Algèbre Commutative, Chap. 1 et 2, Hermann, Paris 1961.Google Scholar
[7] Brenner, J., The Linear Homogeneous Group, III. Ann. Math. 71 (1960), 210223.Google Scholar
[8] Cartan, H. and Eilenberg, S., Homological Algebra. Princeton Univ. Press, Princeton 1956.Google Scholar
[9] Castagna, F., Sums of Automorphisms of a Primary Abelian Group. To appear.Google Scholar
[10] Dieudonné, J., Les Déterminants sur un Corps non Commutative. Bull. Soc. Math. France 71 (1943), 2745.Google Scholar
[11] Freyd, P., Abelian Categories. Harper & Row, New York, Evanston, London 1964.Google Scholar
[12] Goldman, O., Determinants in Projective Modules. Nagoya Math. Journ. 18 (1961), 2736.Google Scholar
[13] Hattori, A., Rank Element of a Projective Module. Nagoya Math. Journ. 25 (1965), 113120.CrossRefGoogle Scholar
[14] Hitotumatu, S., A Characterization of the Determinant. Comm. Math. Univ. Sancti Pauli XIII (1965), 4550.Google Scholar
[15] Litoff, O.I., On the Commutator Subgroup of the General Linear Group. Proc. AMS 6 (1955), 465470.Google Scholar
[16] Mitchell, B., Theory of Categories. Academic Press, New York and London, 1965.Google Scholar
[17] Ozeki, H., Chern Classes of Projective Modules. Nagoya Math. Journ. 23 (1963), 121152.Google Scholar
[18] Taussky, O. and Wielandt, H., On the role of the determinant in semigroups of matrices. Quart. Journ. Math. 14 (1963), 123130.Google Scholar
[19] Wolffhardt, K., Über eine Charakterisierung der Determinante. Math. Ztsch. 103 (1968) 259267.Google Scholar