Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T09:04:40.468Z Has data issue: false hasContentIssue false

Boundedness of semi-stable sheaves of small ranks

Published online by Cambridge University Press:  22 January 2016

Masaki Maruyama*
Affiliation:
Department of MathematicsKyoto University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As for the construction of moduli spaces of stable sheaves, the boundedness of semi-stable sheaves is one of the most important questions which are left unanswered. In the case of dimension one, the boundedness was proved by M. F. Atiyah [1]. When the dimension of the base variety is two and the rank is two, F. Takemoto and D. Mumford showed the boundedness independently ([13]). The author proved in [7] that the boundedness holds for every rank in the case of dimension two, and then D. Gieseker gave another proof of it in [3].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1980

References

[1] Atiyah, M. F., Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7, 1957.Google Scholar
[2] Barth, W., Some properties of stable rank-2 vector bundles on Pn , Math. Ann., 226, 1977.CrossRefGoogle Scholar
[3] Gieseker, D., On the moduli of vector bundles on an algebraic surface, Ann. of Math., 106, 1977.CrossRefGoogle Scholar
[4] Grothendieck, A., Technique de construction et théorème d’existence en géométrie algébrique, IV: Les schémas de Hilbert, Sem. Bourbaki, 1.13, 1960/61, n° 221.Google Scholar
[EGA] Grotendieck, A. and Dieudonne, J., Éléments de Géométrie Algébrique, Chap. IV, Publ. Math. I. H. E. S., Nos. 20, 34, 28 and 32.Google Scholar
[5] Harder, G. and Narasimhan, M. S., On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., 212, 1975.Google Scholar
[6] Kleiman, S., Les théorèmes de fìnitude pour le foncteur de Picard, Sem. de Géométrie Algébrique de Bois Marie, 1966/67, Expose XIII, Lect. Notes in Math., 225, Springer-Verlag, 1971.CrossRefGoogle Scholar
[7] Maruyama, M., Stable vector bundles on an algebraic surface, Nagoya Math. J., 58, 1975.CrossRefGoogle Scholar
[8] Maruyama, M., Openness of a family of torsion free sheaves, J. Math. Kyoto Univ., 16, 1976.Google Scholar
[9] Maruyama, M., Moduli of stable sheaves, I, J. Math. Kyoto Univ., 17, 1977.CrossRefGoogle Scholar
[10] Maruyama, M., Moduli of stable sheaves, II, J. Math. Kyoto Univ., 18, 1978.Google Scholar
[11] Serre, J.-P., Faisceaux algébriques cohérents, Ann. of Math., 61, 1955.Google Scholar
[12] Shatz, S., The decomposition and specialization of algebraic families of vector bundles, Compositio Math., 35, 1977.Google Scholar
[13] Takemoto, F., Stable vector bundles on algebraic surfaces, Nagoya Math. J., 47, 1972.CrossRefGoogle Scholar