Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:33:26.102Z Has data issue: false hasContentIssue false

Boundary value problems of biharmonic functions

Published online by Cambridge University Press:  22 January 2016

Hidematu Tanaka*
Affiliation:
Department of Mathematics, Saitama University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Ω be a bounded domain of n-dimensional Euclidean space Rn (n ≥ 2). On Ω we consider the biharmonic equation

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1976

References

[1] Constantinescu, C. and Cornea, A., Ideale Ränder Riemannscher Flächen. Spriger Verlag (1963).Google Scholar
[2] Deny, J. and Lions, J. L., Les espaces du type de Beppo Levi. Ann. Inst. Fourier, 5 (19534), 305370.Google Scholar
[3] Doob, J. L., Boundary properties of functions with finite Dirichlet integrals. Ann. Inst. Fourier, 12 (1962), 573621.CrossRefGoogle Scholar
[4] Lions, J. L., Sur quelques problèmes aux limites relatifs a des opérateurs différentiels elliptiques. Bull. Soc. Math. France, 83 (1955), 225250.Google Scholar
[5] Lions, J. L., Problèmes aux limites en théorie des distributions. Acta Math. 94 (1955), 13153.CrossRefGoogle Scholar
[6] Maeda, F.-Y., Normal derivatives on an ideal boundary. J. Sci. Hiroshima Univ. Ser. A-1, 28 (1964), 113131.Google Scholar
[7] Naïm, L., Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier, 7 (1957), 183281.Google Scholar
[8] Nakai, M., Dirichlet finite biharmonie functions with Diriehlet finite laplacians. Math. Z., 122 (1971), 203216.Google Scholar