No CrossRef data available.
Article contents
The arc-length variation of analytic capacity and a conformal geometry
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
For a domain Ω in the extended complex plane C ∪{∞}, H∞(Ω) denotes the Banach space of bounded analytic functions in Ω with supremum norm ∥ · ∥H∞ For ζ ∈ Ω, we put
where f′(∞) = lim,z→∞z{f (∞) = f(z)} if ζ = ∞.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1992
References
[ 1 ]
Ahlfors, L., Bounded analytic functions, Duke. Math. J., 14 (1947), 1–11.CrossRefGoogle Scholar
[ 2 ]
Ahlfors, L. and Beurling, A., Conformal invariants and function-theoretic null sets, Acta Math., 83 (1950), 100–134.CrossRefGoogle Scholar
[ 3 ]
Baker, W. II, Kernel functions on domains with hyperelliptic double, Trans. Amer. Math. Soc, 231 (1977), 339–347.CrossRefGoogle Scholar
[ 4 ]
Bergman, S., The kernel function and conformal mapping, Math. Surveys V, Amer. Math. Soc, New York, 1950.Google Scholar
[ 5 ]
Davie, A., Analytic capacity and approximation problems, Trans. Amer. Math. Soc, 171 (1972), 409–444.CrossRefGoogle Scholar
[ 6 ]
Fay, J. D., Theta functions on Riemann surfaces, Lecture Notes in Math. 352, Springer-Verlag, Berlin, 1973.Google Scholar
[ 8 ]
Garabedian, P., Schwarz’s lemma and the Szegö kernel function, Trans. Amer. Math. Soc, 67 (1949), 1–35.Google Scholar
[ 9 ]
Garabedian, P., Distortion of length in conformal mapping, Duke Math. J., 16 (1949), 439–459.CrossRefGoogle Scholar
[10]
Garabedian, P. and Schiffer, M., Identities in the theory of conformal mapping, Trans. Amer. Math. Soc, 65 (1949), 187–238.CrossRefGoogle Scholar
[11]
Garnett, J., Analytic capacity and measure, Lecture Notes in Math. 297, Springer-Verlag, Berlin, 1972.Google Scholar
[12]
Hancock, H., Lectures on the theory of elliptic functions, Dover, New York, 1958.Google Scholar
[13]
Havinson, S. Ya., Analytic capacity of sets, joint non-triviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, (Russian) Mat. Sb., 54 (1961), 3–50.Google Scholar
[14]
Hejhal, D. A., Theta functions, kernel functions and Abel integrals, Mem. Amer. Math. Soc, 129 (1972).Google Scholar
[16]
Milne-Thomson, L. M., Theoretical hydrodynamics, Fifth edition, Macmillan, London, 1968.CrossRefGoogle Scholar
[17]
Murai, T., A real variable method for the Cauchy transform, and analytic capacity, Lecture Notes in Math. 1307, Springer-Verlag, Berlin, 1988.Google Scholar
[18]
Murai, T., The power 3/2 appearing in the estimate of analytic capacity, Pacific J. Math., 143 (1990), 313–340.CrossRefGoogle Scholar
[19]
Murai, T., Analytic capacity for two segments, Nagoya Math. J., 122 (1991), 19–42.CrossRefGoogle Scholar
[20]
Murai, T., A formula for analytic separation capacity, Kōdal Math. J., 13 (1990), 265–288.Google Scholar
[22]
Pommerenke, Ch., Über die analytische Kapazität, Arch. Math., 11 (1960), 270–277.CrossRefGoogle Scholar
[23]
Sario, L. and Oikawa, K., Capacity functions, Springer-Verlag, Berlin, 1969.CrossRefGoogle Scholar
[24]
Schiffer, M., On various types of orthogonalization, Duke Math. J., 17 (1950), 329–366.CrossRefGoogle Scholar
[25]
Schiffer, M., Some recent developments in the theory of conformal mapping; in Courant, R., Dirichlet’s principle, 249–318, Pure Appl. Math. III, Interscience, New York, 1967.Google Scholar
[26]
Schiffer, M. and Hawley, N. S., Connections and conformal mapping, Acta Math., 107 (1962), 175–274.CrossRefGoogle Scholar
[27]
Schiffer, M. and Hawley, N. S., Half-order differentials on Riemann surfaces, Acta Math., 115 (1966), 199–236.Google Scholar
[28]
Schiffer, M. and Spencer, D. C., Functionals of finite Riemann surfaces, Princeton Univ. Press, New Jersey, 1954.Google Scholar
[29]
Smith, E. P., The Garabedian function of an arbitrary compact set, Pacific J. Math., 51 (1974), 289–300.CrossRefGoogle Scholar
[30]
Suita, N., On a metric induced by analytic capacity, Kōdai Math. Sem. Rep., 25 (1973), 215–218.Google Scholar
[31]
Suita, N., On a metric induced by analytic capacity II, Kōdai Math. Sem. Rep., 27 (1976), 159–162.Google Scholar
[32]
Suita, N., On subadditivity of analytic capacity for two continua, Kōdai Math. J., 7 (1984), 73–75.Google Scholar
[34]
Vitushkin, A. G., Analytic capacity of sets in problems of approximation theory, (Russian) Uspehi Mat. Nauk, 22 (1967), 141–199.Google Scholar
[35]
Zalcman, L., Analytic capacity and rational approximation, Lecture Notes in Math. 50, Springer-Verlag, Berlin, 1968.Google Scholar
You have
Access