Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T04:21:05.613Z Has data issue: false hasContentIssue false

Application and simplified proof of a sharp L2 extension theorem

Published online by Cambridge University Press:  11 January 2016

Takeo Ohsawa*
Affiliation:
Graduate School of Mathematics, Nagoya University, Nagoya, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As an application of a sharp L2 extension theorem for holomorphic functions in Guan and Zhou, a stability theorem for the boundary asymptotics of the Bergman kernel is proved. An alternate proof of the extension theorem is given, too. It is a simplified proof in the sense that it is free from ordinary differential equations.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2015

References

[1] Andreotti, A. and Vesentini, E., Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 81130. MR 0175148.Google Scholar
[2] Blocki, Z., Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), 149158. MR 3069114. DOI 10.1007/s00222-012-0423-2.Google Scholar
[3] Blocki, Z., Estimates for and optimal constants, preprint.Google Scholar
[4] Chen, B.-Y., A simple proof of the Ohsawa-Takegoshi extension theorem, preprint, arXiv:1105.2430v1 [math.CV].Google Scholar
[5] Diederich, K. and Ohsawa, T., An estimate for the Bergman distance on pseu-doconvex domains, Ann. of Math. (2) 141 (1995), 181190. MR 1314035. DOI 10.2307/2118631.CrossRefGoogle Scholar
[6] Guan, Q. and Zhou, X.-Y., Optimal constant problem in the L2 extension theorem, C. R. Math. Acad. Sci. Paris 350 (2012), 753756. MR 2981347. DOI 10.1016/j.crma.2012.08.007.Google Scholar
[7] Guan, Q. and Zhou, X.-Y., An L2 extension theorem with optimal estimate, C. R. Math. Acad. Sci. Paris 352 (2014), 137141. MR 3151882. DOI 10.1016/j.crma.2013.12.007.Google Scholar
[8] Guan, Q. and Zhou, X.-Y., A solution of an L2extension problem with an optimal estimate and applications, Ann. of Math. (2) 181 (2015), 11391208. MR 3296822. DOI 10.4007/annals.2015.181.3.6.Google Scholar
[9] Hodge, W. V. D., The Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, 1941. MR 0003947.Google Scholar
[10] Hörmander, L., L2 estimates and existence theorems for the operator, Acta Math. 113 (1965), 89152. MR 0179443.Google Scholar
[11] Kodaira, K., On a differential-geometric method in the theory of analytic stacks, Proc. Natl. Acad. Sci. USA 39 (1953), 12681273. MR 0066693.Google Scholar
[12] Ligocka, E., On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), 257272. MR 1019793. Google Scholar
[13] McNeal, J. D. and Varolin, D., Analytic inversion of adjunction: L2 extension theorems with gain, Ann. Inst. Fourier (Grenoble) 57 (2007), 703718. MR 2336826.Google Scholar
[14] Nakano, S., On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955), 112. MR 0073263.Google Scholar
[15] Ohsawa, T., On complete Kähler domains with C1 -boundary, Publ. Res. Inst. Math. Sci. 16 (1980), 929940. MR 0602476. DOI 10.2977/prims/1195186937.Google Scholar
[16] Ohsawa, T., Boundary behavior of the Bergman kernel function on pseudocon- vex domains, Publ. Res. Inst. Math. Sci. 20 (1984), 897902. MR 0764336. DOI 10.2977/prims/1195180870.Google Scholar
[17] Ohsawa, T., On the extension of L2 holomorphic functions, III: Negligible weights, Math. Z. 219 (1995), 215225. MR 1337216. DOI 10.1007/BF02572360.Google Scholar
[18] Ohsawa, T. and Sibony, N., Bounded p.s.h. functions and pseudoconvexity in Kähler manifold, Nagoya Math. J. 149 (1998), 18. MR 1619572.Google Scholar
[19] Ohsawa, T. and Takegoshi, K., On the extension of L2 holomorphic functions, Math. Z. 195 (1987), 197204. MR 0892051. DOI 10.1007/BF01166457.Google Scholar
[20] Skoda, H., Application des techniques L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. Éc. Norm. Supér. (4) 5 (1972), 545579. MR 0333246.Google Scholar
[21] Suita, N., Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal. 46 (1972), 212217. MR 0367181.Google Scholar
[22] Zhu, L., Guan, Q., and Zhou, X. On the Ohsawa-Takegoshi L2 extension theorem and the Bochner-Kodaira identity with non-smooth twist factor, J. Math. Pures Appl. (9) 97 (2012), 579601. MR 2921602. DOI 10.1016/j.matpur.2011.09.010.Google Scholar