Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T04:21:27.385Z Has data issue: false hasContentIssue false

An Extension of Ito’s Differentiation Formula

Published online by Cambridge University Press:  22 January 2016

Ata N. Al-Hussaini
Affiliation:
Department of Statistics and Applied Probability University of Alberta, Edmonton, Canada T6G 2G1
Robert J. Elliott
Affiliation:
Department of Statistics and Applied Probability University of Alberta, Edmonton, Canada T6G 2G1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Introduction 1. If denotes the local time of a continuous semi-martingale X at a Bouleau and Yor [1] have obtained a form of Ito’s differentiation formula which states that for absolutely continuous functions F(x)

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1987

References

[ 1 ] Bouleau, N. and Yor, M., Sur la variation quadratique des temps locaux de certaines semimartingales, C.R. Acad. Sci. Paris, 292 (1981), 491494.Google Scholar
[ 2 ] Meyer, P. A., Un cours sur les integrales stochastiques, Sem de Probabilités X, Lee. Notes in Math., 511, 245400.Google Scholar
[ 3 ] Perkins, E., Local time is a semimartingale, Z. Wahrsch. Verw. Gebiete, 60 (1982), 79117.Google Scholar
[ 4 ] Yamada, T., On some representations concerning stochastic integrals, to appear.Google Scholar
[ 5 ] Yor, M., Sur la transformation de Hilbert des temps locaux Browniens, et une extension de la Formule d’Ito, Sem de Probabilités XVI, Lee. Notes in Math., 920, 238247.Google Scholar