Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T23:15:25.376Z Has data issue: false hasContentIssue false

An Analogue of Pitman’s 2M — X Theorem for Exponential Wiener Functionals Part II: The Role of the Generalized Inverse Gaussian Laws

Published online by Cambridge University Press:  22 January 2016

Hiroyuki Matsumoto
Affiliation:
School of Informatics and Sciences, Nagoya University, Chikusa-ku Nagoya, 464-8601, Japan, FAX: 052-789-4800, [email protected]
Marc Yor
Affiliation:
Laboratoire de Probabilités, Université, Pierre et Marie Curie 4, Place Jussieu, Tour 56 F-75252 Paris Cedex 05, France, FAX: +33 1 44 27 72 23
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Part I of this work, we have shown that the stochastic process Z(µ) defined by (8.1) below is a diffusion process, which may be considered as an extension of Pitman’s 2M — X theorem. In this Part II, we deduce from an identity in law partly due to Dufresne that Z(µ) is intertwined with Brownian motion with drift µ and that the intertwining kernel may be expressed in terms of Generalized Inverse Gaussian laws.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2001

References

[1] Alili, L., Dufresne, D. et Yor, M., Sur l’identité de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift, in [30].Google Scholar
[2] Barndorff-Nielsen, O., Hyperbolic distributions and distributions on hyperbolae, Scand. J. Stat., 5 (1978), 151157.Google Scholar
[3] Barndorff-Nielsen, O., Blaesild, P. and Halgreen, C., First hitting time models for the generalized inverse Gaussian distributions, Stoch. Proc. Appl., 7 (1978), 4954.Google Scholar
[4] Barndorff-Nielsen, O. and Shephard, N., Aggregation and model construction for volatility models, preprint.Google Scholar
[5] Bernadac, E., Fractions continues sur les matrices symétriques réelles et la loi Gaussi-enne inverse, C. R. Acad. Sci. Paris, Série I, 315 (1992), 329332.Google Scholar
[6] Bertoin, J. and Pitman, J., Path transformations connecting Brownian bridge, excursion and meander, Bull. Sci. Math., 118 (1994), 147166.Google Scholar
[7] Biane, P. and Yor, M., Quelques précisions sur le méandre brownien, Bull. Sci. Math., 112 (1988), 101109.Google Scholar
[8] Dufresne, D., The distribution of a perpetuity, with application to risk theory and pension funding, Scand. Actuarial J. (1990), 3979.Google Scholar
[9] Dufresne, D., An affine property of the reciprocal Asian option process, to appear in Osaka J. Math. 38 (2001).Google Scholar
[10] Good, I. J., The population frequencies of species and the estimation of population parameters, Biometrika, 40 (1953), 237264.Google Scholar
[11] Imhof, J.-P., Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications, J. Appl. Prob., 21 (1984), 500510.Google Scholar
[12] Imhof, J.-P., A simple proof of Pitman’s 2M - X theorem, Adv. Appl. Prob., 24 (1992), 499501.Google Scholar
[13] Lebedev, N. N., Special Functions and their Applications, Dover, New York, 1972.Google Scholar
[14] Letac, G. and Seshadri, V., A characterization of the generalized inverse Gaussian by continued fractions, Z. W., 62 (1983), 485489.Google Scholar
[15] Letac, G. and Wesolowski, J., An independence property for the product of gig and gamma laws, Ann. Prob., 28 (2000), 13711383.Google Scholar
[16] Liptser, R. S. and Shiryayev, A. N., Statistics of Random Processes I, General Theory, Springer-Verlag, Berlin, 1977.Google Scholar
[17] Matsumoto, H. and Yor, M., A relationship between Brownian motions with opposite drifts, to appear in Osaka J. Math. 38 (2001).Google Scholar
[18] Matsumoto, H. and Yor, M., A version of Pitman’s 2M - X theorem for geometric Brownian motions, C. R. Acad. Sc. Paris, Série I, 328 (1999), 10671074.Google Scholar
[19] Matsumoto, H. and Yor, M., An analogue of Pitman’s 2M -X theorem for exponential Wiener function-als, Part I: A time-inversion approach, Nagoya Math. J., 159 (2000), 125166.Google Scholar
[20] Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, 3rd ed., Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
[21] Rogers, L. C. G. and Pitman, J. W., Markov functions, Ann. Prob., 9 (1981), 573582.CrossRefGoogle Scholar
[22] Seshadri, V., The Inverse Gaussian Distributions, Oxford Univ. Press, Oxford, 1993.Google Scholar
[23] Terras, A., Harmonic Analysis on Symmetric Spaces and Applications II, Springer, Berlin, 1988.Google Scholar
[24] Vallois, P., La loi gaussienne inverse généralisée comme premier ou dernier temps de passage de diffusions, Bull. Sc. math., 2e série, 115 (1991), 301368.Google Scholar
[25] Watson, G. N., A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944.Google Scholar
[26] Williams, D., Path decomposition and continuity of local time for one dimensional diffusions I, Proc. London Math. Soc., 28 (1974), 738768.Google Scholar
[27] Yor, M., On some exponential functionals of Brownian motion, Adv. Appl. Prob., 24 (1992), 509531.CrossRefGoogle Scholar
[28] Yor, M., Sur certaines fonctionnelles exponentielles du mouvement brownien réel, J. Appl. Prob., 29 (1992), 202208.Google Scholar
[29] Yor, M., Tsirel’son’s equation in discrete time, Prob. Th. Rel. Fields, 91 (1992), 135152.Google Scholar
[30] Yor, M. (ed.), Exponential Functionals and Principal Values related to Brownian Motion, A collection of research papers, Biblioteca de la Revista Matemätica Iberoamericana, 1997.Google Scholar