Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T22:11:24.208Z Has data issue: false hasContentIssue false

An analogue of Pitman’s 2M – X theorem for exponential Wiener functionals: Part I: A time-inversion approach

Published online by Cambridge University Press:  22 January 2016

Hiroyuki Matsumoto
Affiliation:
School of Informatics and Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan, FAX: 052-789-4800, [email protected]
Marc Yor
Affiliation:
Laboratoire de Probabilités, Université Pierre et Marie Curie, 4, Place Jussieu, Tour 56, F-75252 Paris Cedex 05, France, FAX: +33 1 44 27 72 23
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be a one-dimensional Brownian motion with constant drift µ ∈ R starting from 0. In this paper we show that

gives rise to a diffusion process and we explain how this result may be considered as an extension of the celebrated Pitman’s 2M - X theorem. We also derive the infinitesimal generator and some properties of the diffusion process and, in particular, its relation to the generalized Bessel processes.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2000

References

[1] Alili, L., Dufresne, D. et Yor, M., Sur l’identité de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift, in [55].Google Scholar
[2] Arnold, L., Random Dynamical Systems, Springer, 1998.Google Scholar
[3] Bertoin, J., An extension of Pitman’s theorem for spectrally positive Lévy processes, Ann. Prob., 20 (1993), 14631483.Google Scholar
[4] Biane, P., Quelques propriétés du mouvement Brownien dans un cone, Stoch., Proc. Appl., 53 (1994), 233240.Google Scholar
[5] Biane, P., Intertwining of Markov semi-groups, some examples, Sém. Prob., XXIX, Lecture Notes in Math., 1613, 3036, Springer, 1995.Google Scholar
[6] Brillinger, D. R., A particle migrating randomly on a sphere, J. Theor. Prob., 10 (1997), 429443.Google Scholar
[7] Carmona, P., Petit, F. and Yor, M., On the distribution and asymptotic results for exponential functionals of Lévy processes, in [55].Google Scholar
[8] Carmona, P., Petit, F. and Yor, M., Beta-Gamma variables and intertwinings of certain Markov processes, Rev. Mat. Iberoamericana, 14 (1998), 311367.Google Scholar
[9] de Haan, L. and Karandikar, R. L., Embedding a stochastic difference equation into a continuous-time process, Stoch. Proc. Appl., 32 (1989), 225235.CrossRefGoogle Scholar
[10] Donati-Martin, C. and Yor, M., Some measure-valued Markov processes attached to occupation times of Brownian motion, Bernoulli, 6 (2000), 6372.Google Scholar
[11] Donati-Martin, C., Ghomrasni, R. and Yor, M., On certain Markov processes attached to exponential functionals of Brownian motion; application to Asian options, to appear in Rev. Mat. Iberoamericana.Google Scholar
[12] Doney, R.A., Warren, J. and Yor, M., Perturbed Bessel processes, Sém. Prob., XXXII, Lecture Notes in Math., 1686, 237249, Springer, 1998.Google Scholar
[13] Dufresne, D., An affine property of the reciprocal Asian option process, to appear in Osaka J. Math.Google Scholar
[14] Emery, M., private communications.Google Scholar
[15] Emery, M. and Perkins, E., La filtration de B + L, Z.W., 59 (1982), 383390.Google Scholar
[16] Fitzsimmons, P. J., A converse to a theorem of P. Lévy, Ann. Prob., 15 (1987), 15151523.Google Scholar
[17] Hu, Y., private communications.Google Scholar
[18] Itô, K. and McKean, H. P. Jr., Diffusion Processes and Their Sample Paths, Springer-Verlag, Berlin, 1965.Google Scholar
[19] Kendall, D. G., Pole-seeking Brownian motion and bird navigation, J. Roy. Stat. Soc., 36B (1974), 365417.Google Scholar
[20] Lebedev, N. N., Special Functions and their Applications, Dover, New York, 1972.Google Scholar
[21] Le Gall, J. F., Sur la mesure de Hausdorff de la courbe brownienne, Sém. Prob. XIX, Lec. Notes in Math., 1123, 297313, Springer, 1985.Google Scholar
[22] Le Gall, J. F., Mouvement brownien, cônes et processus stables, Prob. Th. Rel. Fields, 76 (1987), 587627.CrossRefGoogle Scholar
[23] Le Gall, J. F. and Yor, M., Excursions browniennes et carrés de processus de Bessel, C. R. Acad. Sci. Paris, Série I, 303 (1986), 7376.Google Scholar
[24] Matsumoto, H. and Yor, M., On Bougerol and Dufresne’s identities for exponential Brownian functional, Proc. Japan Acad., 74, Ser.A (1998), 152155.Google Scholar
[25] Matsumoto, H. and Yor, M., A version of Pitman’s 2M - X theorem for geometric Brownian motions, C. R. Acad. Sc. Paris Série I, 328 (1999), 10671074.CrossRefGoogle Scholar
[26] Matsumoto, H. and Yor, M., A relationship between Brownian motions with opposite drifts via certain enlargements of the Brownian filtration, to appear in Osaka J. Math.Google Scholar
[27] Matsumoto, H. and Yor, M., An analogue of Pitman’s 2M-X theorem for exponential Brownian functionals Part II: the role of generalized inverse Gaussian distributions, to appear in Nagoya Math. J.Google Scholar
[28] Nagasawa, M., Time reversal of Markov processes, Nagoya Math. J., 24 (1964), 177204.Google Scholar
[29] Ogura, Y., One-dimensional bi-generalized diffusion processes, J. Math. Soc. Japan, 41 (1989), 213242.Google Scholar
[30] Pitman, J. W., One-dimensional Brownian motion and the three-dimensional Bessel process, Adv. Appl. Prob., 7 (1975), 511526.Google Scholar
[31] Pitman, J. W. and Yor, M., Processus de Bessel, et mouvement brownien, avec ≪Drift≫, C. R. Acad. Sc. Paris Série I, 291 (1980), 151153.Google Scholar
[32] Pitman, J. W. and Yor, M., Bessel processes and infinitely divisible laws, Stochastic Integrals, ed. by Williams, D., Lecture Notes Math., 851, 285370, Springer-Verlag, Berlin, 1981.Google Scholar
[33] Rauscher, B., Some remarks on Pitman’s theorem, Sém. Prob. XXXI, 266271, Lecture Notes Math., 1655, Springer, Berlin, 1997.Google Scholar
[34] Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, 3rd. Ed., Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
[35] Rogers, L. C. G., Characterizing all diffusions with the 2M-X property, Ann. Prob., 9 (1981), 561572.Google Scholar
[36] Rogers, L. C. G. and Pitman, J. W., Markov functions, Ann. Prob., 9 (1981), 573582.CrossRefGoogle Scholar
[37] Saisho, Y. and Tanemura, H., Pitman type theorem for one-dimensional diffusion processes, Tokyo J. Math., 13 (1990), 429440.CrossRefGoogle Scholar
[38] Seshadri, V., The Inverse Gaussian Distributions, Oxford Univ. Press, Oxford, 1993.Google Scholar
[39] Shepp, L., A first passage problem for the Wiener process, Ann. Math. Stat., 38 (1967), 19121914.Google Scholar
[40] Takaoka, K., On the martingale obtained by an extension due to Saisho, Tanemura and Yor of Piman’s theorem, Sém. Prob. XXXI, 256265, Lecture Notes Math., 1655, Springer, Berlin, 1997.Google Scholar
[41] Tanaka, H., Time reversal of random walks in one dimension, Tokyo J. Math., 12 (1989), 159174.Google Scholar
[42] Tanaka, H., Time reversal of random walks in R d , Tokyo J. Math., 13 (1989), 375389.Google Scholar
[43] Watanabe, S., On time inversion of one-dimensional diffusion processes, Z.W., 31 (1975), 115124.Google Scholar
[44] Watanabe, S., Invariants of one-dimensional diffusion processes and applications, J. Korean Math. Soc., 35 (1998), 637658.Google Scholar
[45] Watanabe, S., Bilateral Bessel diffusion processes with drift and time inversion, preprint.Google Scholar
[46] Watson, G. N., A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944.Google Scholar
[47] Williams, D., Diffusions, Markov Processes, & Martingales, Volume 1: Foundations, John Wiley & Sons, New York, 1979.Google Scholar
[48] Yor, M., Some Aspects of Brownian Motion, Part I: Some Special Functionals, Lectures in Math., ETH Zürich, Birkhäuser, Basel, 1992.Google Scholar
[49] Yor, M., Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems, Lectures in Math., ETH Zürich, Birkhäuser, Basel, 1997.Google Scholar
[50] Yor, M., Loi de l’indice du lacet Brownien, et distribution de Hartman-Watson, Z.W., 53 (1980), 7195.CrossRefGoogle Scholar
[51] Yor, M., On square-root boundaries for Bessel processes and pole seeking Brownian motions, Stochastic Analysis and Applications, ed. by Truman, A. and Williams, D., 100107, Lecture Notes Math., 1095, Springer, Berlin, 1984.Google Scholar
[52] Yor, M., Une extension markovienne de l’algèbre des lois béta-gamma, C. R. Acad. Sci. Paris Série I, 308 (1989), 257260.Google Scholar
[53] Yor, M., On some exponential functionals of Brownian motion, Adv. Appl. Prob., 24 (1992), 509531.CrossRefGoogle Scholar
[54] Yor, M., Interpretation in terms of Brownian and Bessel meanders of the distribution of a subordinated perpetuity, to appear in a Birkhäser volume on Lévy processes, ed. by Mikosh, T..Google Scholar
[55] Yor, M. (ed.), Exponential Functionals and Principal Values related to Brownian Motion, A collection of research papers, Biblioteca de la Revista Matemática Iberoamericana, 1997.Google Scholar