Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-12T22:59:21.719Z Has data issue: false hasContentIssue false

Algebro-geometric version of Nevanlinna’s lemma on logarithmic derivative and applications

Published online by Cambridge University Press:  22 January 2016

Katsutoshi Yamanoi*
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we shall establish some generalization of Nevanlinna’s Lemma on Logarithmic Derivative to the case of meromorphic maps from a finite analytic covering space over the m-dimensional complex affine space ℂm to a smooth complex projective variety. Then we shall apply this to “the Second Main Theorem” in Nevanlinna theory in several complex variables.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2004

References

[B26] Bloch, A., Sur les systemes de fonctions uniformes satisfaisant a l’équation d’une variété algébrique dont l’irrégularité dépasse la dimension, J. Math. Pures Appl., 5 (1926), 966.Google Scholar
[CG72] Carlson, J. and Griffiths, P., A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. Math., 95 (1972), 557584.CrossRefGoogle Scholar
[C33] Cartan, H., Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 531.Google Scholar
[GG80] Green, M. and Griffiths, P., Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979, Springer-Verlag, New York-Heidelberg-Berlin (1980), pp. 4174.Google Scholar
[GH78] Griffiths, P. and Harris, J., Principles of Algebraic Geometry, John Wiley and Sons, 1978.Google Scholar
[GK73] Griffiths, P. and King, J., Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math., 130 (1973), 145220.Google Scholar
[H77] Hartshorne, R., Algebraic geometry, Springer-Verlag, Berlin, 1977.Google Scholar
[Kob91a] Kobayashi, R., Holomorphic curves in Abelian varieties, preprint (1991).Google Scholar
[Kob91b] Kobayashi, R., Holomorphic curves into algebraic subvarieties of an abelian variety, Internat. J. Math., 2 (1991), 711724.Google Scholar
[Kob96a] Kobayashi, R., Restructuring value distribution theory, Geometric complex analysis (Hayama, 1995), World Sci. Publishing, River Edge, NJ (1996), pp. 37354.Google Scholar
[Kob96b] Kobayashi, R., Nevanlinna theory and number theory, Sugaku, 48 (1996), no. 2, 113127, (Japanese).Google Scholar
[Kob00] Kobayashi, R., Holomorphic curves in Abelian varieties: The second main theorem and applications, Japan. J. Math., 26 (2000), no. 1, 129152.Google Scholar
[L87] Lang, S., Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York-Berlin-Heidelberg, 1987.Google Scholar
[M96] McQuillan, M., A Dynamical Counterpart to Faltings’ “Diophantine Approximation on Abelian Varieties”, preprint (1996).Google Scholar
[Nev39] Nevanlinna, R., Le théoreme de Picard-Borel et la théorie des fonctions méromophes, Gautheir-Villars, Paris, 1939.Google Scholar
[No76] Noguchi, J., Meromorphic mappings of a covering space over Cm into a projective variety and defect relations, Hiroshima Math. J., 6 (1976), 265280.Google Scholar
[No77] Noguchi, J., Holomorphic curves in algebraic varieties, Hiroshima Math. J., 7 (1977), 833853.CrossRefGoogle Scholar
[No81] Noguchi, J., Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J., 83 (1981), 213233.Google Scholar
[No85] Noguchi, J., On the value distribution of meromorphic mappings of covering spaces over Cm into algebraic varieties, J. Math. Soc. Japan, 37 (1985), 295313.Google Scholar
[No86] Noguchi, J., Logarithmic jet spaces and extensions of de Franchis’ theorem, Contributions to Several Complex Variables, Aspects Math. No. 9, Vieweg, Braunschweig (1986), pp. 227249.Google Scholar
[No98] Noguchi, J., On holomorphic curves in semi-Abelian varieties, Math. Z., 228 (1998), no. 4, 713721.CrossRefGoogle Scholar
[NoO90] Noguchi, J. and Ochiai, T., Geometric function theory in several complex variables, Transl. Math. Mon. 80, Amer. Math. Soc., Providence, R.I., 1990.Google Scholar
[NoWY02] Noguchi, J., Winkelmann, J. and Yamanoi, K., The second main theorem for holomorphic curves into semi-Abelian varieties, Acta Math., 188 (2002), no. 1, 129161.Google Scholar
[O] Ochiai, T., On holomorphic curves in algebraic varieties with ample irregularity, Invent. Math., 43 (1977), 8396.Google Scholar
[Sh75] Shiffman, B., Nevanlinna defect relations for singular divisors, Invent. Math., 31 (1975), 155182.Google Scholar
[Sil87] Silverman, J., Arithmetic distance functions and height functions in diophantine geometry, Math. Ann., 279 (1987), no. 2, 193216.Google Scholar
[SiY96] Siu, Y.-T. and Yeung, S.-K., A generalized Bloch’s theorem and the hyperbolicity of the complement of an ample divisor in an Abelian variety, Math. Ann., 306 (1996), 743758.Google Scholar
[SiY97] Siu, Y.-T. and Yeung, S.-K., Defects for ample divisors of Abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees, Amer. J. Math., 119 (1997), 11391172.Google Scholar
[Vi77] Vitter, A. L., The lemma of the logarithmic derivative in several complex variables, Duke Math. J., 44 (1977), 89104.Google Scholar