Hostname: page-component-6bf8c574d5-8gtf8 Total loading time: 0 Render date: 2025-02-25T17:58:24.335Z Has data issue: false hasContentIssue false

TRIANGULATED CHARACTERIZATIONS OF SINGULARITIES

Published online by Cambridge University Press:  24 February 2025

PAT LANK*
Affiliation:
Dipartimento di Matematica “F. Enriques” Università degli Studi di Milano Via Cesare Saldini 50, 20133 Milano, Italy
SRIDHAR VENKATESH
Affiliation:
Department of Mathematics University of Michigan Ann Arbor, MI 48109 United States [email protected]

Abstract

This work presents a range of triangulated characterizations for important classes of singularities such as derived splinters, rational singularities, and Du Bois singularities. An invariant called “level” in a triangulated category can be used to measure the failure of a variety to have a prescribed singularity type. We provide explicit computations of this invariant for reduced Nagata schemes of Krull dimension one and for affine cones over smooth projective hypersurfaces. Furthermore, these computations are utilized to produce upper bounds for Rouquier dimension on the respective bounded derived categories.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. L. Avramov, Buchweitz, R.-O., Iyengar, S. B. and Miller, C., Homology of perfect complexes , Adv. Math. 223 (2010), no. 5, 17311781.Google Scholar
Aoki, K., Quasiexcellence implies strong generation , J. Reine Angew. Math. 780 (2021), 133138.CrossRefGoogle Scholar
Atiyah, M., On the Krull-Schmidt theorem with application to sheaves , Bull. Soc. Math. France 84 (1956), 307317.CrossRefGoogle Scholar
Bhaduri, A., Dey, S. and Lank, P., Preservation for generation along the structure morphism of coherent algebras over a scheme, preprint, arXiv:2312.02840, 2025.Google Scholar
Bhatt, B., Derived splinters in positive characteristic , Compos. Math. 148 (2012), no. 6, 17571786.CrossRefGoogle Scholar
Ballard, M. R., Iyengar, S. B., Lank, P., Mukhopadhyay, A. and Pollitz, J., High frobenius pushforwards generate the bounded derived category, preprint, arXiv:2303.18085, 2023.Google Scholar
Bondal, A. and van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry , Mosc. Math. J. 3 (2003), no. 1, 136.CrossRefGoogle Scholar
Clark, A. and Lank, P., Kabeer Manali Rahul, and Chris J. Parker. Classification and nonexistence for $t$ -structures on derived categories of schemes, preprint, arXiv:2404.08578, 2024.Google Scholar
Chou, C.-C. and Song, L., Singularities of secant varieties , Int. Math. Res. Not. 2018 (2018), no. 9, 28442865.Google Scholar
Du Bois, P., Complexe de de Rham filtre d’une variété singulière , Bull. Soc. Math. Fr. 109 (1981), 4181.CrossRefGoogle Scholar
Dey, S. and Lank, P., Closedness of the singular locus and generation for derived categories, preprint, arXiv:2403.19564, 2024.Google Scholar
Dey, S. and Lank, P., Dévissage for generation in derived categories, preprint, arXiv:2401.13661, 2024.Google Scholar
De Deyn, T., Lank, P. and Rahul, K. M., Approximability and rouquier dimension for noncommutative algebras over schemes, preprint, arXiv:2408.04561, 2024.Google Scholar
De Deyn, T., Lank, P. and Rahul, K. M., Descent and generation for noncommutative coherent algebras over schemes, preprint, arXiv: 2410.01785, 2024.Google Scholar
Dey, S., Lank, P. and Takahashi, R., Strong generation for module categories, preprint, arXiv:2307.13675, 2023.Google Scholar
Elagin, A., Lunts, V. A. and Schnürer, O. M., Smoothness of derived categories of algebras , Mosc. Math. J. 20 (2020), no. 2, 277309.CrossRefGoogle Scholar
Grothendieck, A., Éléments de géométrie algébrique: I. Le langage des schémas. II: Étude globale élémentaire de quelques classe de morphismes. III: Étude cohomologique des faisceaux cohérents (première partie) , Publ. Math., Inst. Hautes Étud. Sci. 4 (1960), 1228.CrossRefGoogle Scholar
Iyengar, S. B. and Takahashi, R., Openness of the regular locus and generators for module categories , Acta Math. Vietnam. 44 (2019), no. 1, 207212.CrossRefGoogle Scholar
Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal embeddings. I, volume 339 of Lecture Notes in Mathematics, Springer, Cham, 1973.CrossRefGoogle Scholar
Kollár, J., Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács.CrossRefGoogle Scholar
Kovács, S. J., Rational, log canonical, Du Bois singularities: On the conjectures of Kollár and Steenbrink , Compos. Math. 118 (1999), no. 2, 123133.CrossRefGoogle Scholar
Kovács, S. J., A characterization of rational singularities , Duke Math. J. 102 (2000), no. 2, 187191.CrossRefGoogle Scholar
Krause, H., Krull-Schmidt categories and projective covers , Expo. Math. 33 (2015), no. 4, 535549.CrossRefGoogle Scholar
Le, J. and Chen, X.-W., Karoubianness of a triangulated category , J. Algebra 310 (2007), no. 1, 452457.CrossRefGoogle Scholar
Lank, P., McDonald, P. and Venkatesh, S., Derived characterizations for rational pairs á la schwede-takagi and kollár-kovács, preprint, arXiv:2501.02783, 2025.Google Scholar
Lank, P. and Olander, N., Approximation by perfect complexes detects rouquier dimension, preprint, arXiv:2401.10146, 2024.Google Scholar
Ma, F., Splitting in integral extensions, Cohen-Macaulay modules and algebras , J. Algebra 116 (1988), no. 1, 176195.CrossRefGoogle Scholar
Mehta, V. B. and Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties , Ann. Math. 2 (1985), no. 122, 2740.CrossRefGoogle Scholar
Murayama, T., Relative vanishing theorems for $\boldsymbol{Q}$ -schemes, preprint, arXiv:2101.10397, 2024.Google Scholar
Neeman, A., Strong generators in ${\boldsymbol{D}}^{perf}(X)$ and ${\boldsymbol{D}}_{coh}^b(X)$ , Ann. Math. (2) 193 (2021), no. 3, 689732.CrossRefGoogle Scholar
Neeman, A., Bounded t-structures on the category of perfect complexes , Acta. Math. (to appear), preprint, arXiv: 2202.08861, 2024.CrossRefGoogle Scholar
Olander, N., Ample line bundles and generation time , J. Reine Angew. Math. 800 (2023), 299304.Google Scholar
Orlov, D., Remarks on generators and dimensions of triangulated categories , Mosc. Math. J. 9 (2009), no. 1, 143149.CrossRefGoogle Scholar
Rouquier, R., Dimensions of triangulated categories, J. $\mathrm{K}$ -Theory 1 (2008), no. 2, 193256.Google Scholar
Schwede, K., A simple characterization of Du Bois singularities , Compos. Math. 143 (2007), no. 4, 813828.CrossRefGoogle Scholar
Singh, A. K., $\mathbb{Q}$ -gorenstein splinter rings of characteristic $p$ are F-regular, Math. Proc. Camb. Philos. Soc. 127 (1999), no. 2, 201205.CrossRefGoogle Scholar
The Stacks Project Authors, Stacks project, 2024. https://stacks.math.columbia.edu.Google Scholar
Steenbrink, J. H. M., Cohomologically insignificant degenerations , Compos. Math. 42 (1981), 315320.Google Scholar
Walker, C. L. and Warfield, R. B. Jr., Unique decomposition and isomorphic refinement theorems in additive categories , J. Pure Appl. Algebra 7 (1976), 347359.CrossRefGoogle Scholar