We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One of promising photorechargeable electrode, which has two functions of photovoltaic and electrical energy storage, is a composite film of mesoporous TiO2 and conducting polymer polyaniline. Galvanostatic charge/discharge characteristics of the TiO2-polyaniline composite were examined to reveal how fast the film was charged. The film with a specific capacity 60-120 mAh g–1 was found to be fully charged at high charging rate 20 mA cm–2 which is comparable to high performance solar cells. Such high charging rate was achieved by the compact polyaniline layer covering the large specific surface area of mesoporous TiO2 film.