Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T09:32:42.751Z Has data issue: false hasContentIssue false

ZnO Thin Film Transistors for RF Applications

Published online by Cambridge University Press:  31 January 2011

Burhan Bayraktaroglu
Affiliation:
Kevin Leedy
Affiliation:
[email protected], Air Force Research Laboratory, WAPFB, Ohio, United States
Robert Neidhard
Affiliation:
[email protected], Air Force Research Laboratory, WPAFB, Ohio, United States
Get access

Abstract

Nanocrystalline ZnO thin films grown by the pulsed laser deposition technique were used to fabricate high performance thin film transistors suitable for RF applications. It was shown that drain current on/off ratios of higher than 1×1012, sub-threshold voltage swing values lower than 100 mV/decade and hysteresis-free operation could be maintained with films grown across a wide temperature range (25°C to 400°C). Films grown at 200°C have the lowest surface roughness and result in devices with the highest current density operation. Devices with 1.2 μm gate lengths and Au-based gate metals had record current gain and power gain cut off frequencies of fT = 2.9 GHz and fmax = 10 GHz, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kagan, C. R. and Andry, P., “Thin Film Transistors”, Marcel Dekker Publishing, New York, 2003.10.1201/9780203911778Google Scholar
2 Carcia, P.F., McLean, R. S., and Reilly, M. H., Appl. Phys. Lett, 88, 123509 (2006).10.1063/1.2188379Google Scholar
3 Shin, P. K., Aya, Y., Ikegami, T., and Ebihara, K., Thin Solid Films 516, 3767 (2008).10.1016/j.tsf.2007.06.068Google Scholar
4 Lim, W., Kim, S. H., Wang, Y. L., Lee, J. W., Norton, D. P., Pearton, S. J., Ren, F., and Kravchenko, I. I., J. Electrochem. Soc. 155, H383 (2008).10.1149/1.2903294Google Scholar
5 Chiang, H. Q., Hong, D., Hung, C. M., Presley, R. E. and Wager, J. F., J. Vac. Sci. Technol. B 24, 2702 (2006).10.1116/1.2366569Google Scholar
6 Chiang, H. Q., Wager, J. F., Hoffman, R. L., Jeong, J., and Keszler, D. A., Appl. Phys. Lett. 86, 013503 (2005).10.1063/1.1843286Google Scholar
7 Bayraktaroglu, B., Leedy, K. and Neidhard, R., IEEE Electron Dev. Lett. 29, 1024 (2008).10.1109/LED.2008.2001635Google Scholar
8 Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., DoǦan, S., Avrutin, V., Cho, S.J., and Morkoç, H., Appl. Phys. Rev. 98, 041301 (2005).10.1063/1.1992666Google Scholar
9 Bayraktaroglu, B., Leedy, K. and Neidhard, R., IEEE Electron Dev. Lett. 30, 946 (2009).10.1109/LED.2009.2025672Google Scholar
10 Bentes, L., Ayouchi, R., Santos, C., Schwarz, R., Sanguino, P., Conde, O., Peres, M., Monteiro, T., and Teodoro, O., Superlattices and Microstructures 42, 152 (2007).10.1016/j.spmi.2007.04.049Google Scholar
11 Amirhaghi, S., Craciun, V., Craciun, D., Elders, J. and Boyd, I. W., Microelectronics Engineering 25, 321 (1994).10.1016/0167-9317(94)90032-9Google Scholar
12 Han, L., Mei, F., Liu, C., Pedro, C. and Alves, E., Physica E, 40, 699 (2008).10.1016/j.physe.2007.09.135Google Scholar
13 Yu, C.-F., Sung, C.-W., Chen, S.-H. and Sun, S.-J., Appl. Surface Sci. 256, 792 (2009).10.1016/j.apsusc.2009.08.061Google Scholar
14 Wang, Y. L., Covert, L. N., Anderson, T. J., Lim, W., Lin, J., Pearton, S. J., Norton, D. P., Zavada, J. M. and Ren, F., Electrochem. Sol. State Lett. 11, H60 (2008).10.1149/1.2825474Google Scholar