Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T05:35:55.707Z Has data issue: false hasContentIssue false

Zintl Phase as Thermoelectric Materials: Synthesis, Structure and Properties of Yb5Al2Sb6

Published online by Cambridge University Press:  01 February 2011

Iliya Todorov
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, 9700 S. Cass Ave., Argonne, IL, 60439, United States
Duck-Young Chung
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, 9700 S. Cass Ave., Arg onne, IL, 60439, United States
Mercouri Kanatzidis
Affiliation:
[email protected], Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL, 60208, United States
Get access

Abstract

We present the synthesis, crystal structure, spectroscopic properties, and electronic structure of a new member of the Zintl family, Yb5Al2Sb6. The compound crystallizes in the Ba5Al2Bi6 structure type. A preliminary assessment of its thermoelectric properties including electrical conductivity, thermopower, and thermal conductivity are reported. Moreover, investigations of solid solutions of this phase, doping effects and chemical modifications will be presented. The room temperature conductivity, thermopower and thermal conductivity of Yb5Al2Sb6/0.5Ge were 1100 S/cm, 20 μV/K, and 3.8 W/m.K, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T., Iversen, B. B.. Nature Materials, 3, 458 (2004)Google Scholar
2 Chan, J. Y., Olmstead, M. M., Kauzlarich, S. M., and Webb, D., J. Chem. Mater., 10, 3583 (1998)Google Scholar
3(a) Coles, R. B., Contemp. Phys., 28, 143 (1994); (b) F. Steglich, C. Geibel, K. Gloss, G. Olesch, C. Schank, C. Wassilew, A. Loidl, A. Krimmel, and R. G. Stewart, J. Low Temp. Phys., 95, 3 (1994); (c) M. B. Maple, Physica B, 171, 389 (1991)Google Scholar
4 Brown, S. R., Kauzlarich, S. M., Gascoin, F. and Snyder, G. J., Chem. Mater., 18, 1873–77 (2006)Google Scholar
5 Kim, S-J., Ireland, J. R., Kannewurf, C. R. and Kanatzidis, M. G., J. Solid State Chem., 155, 5561 (2000)Google Scholar
6(a) Cordier, G., Schaefer, H., and Stelter, M., Z. Naturforsch., B40, 975 (1985); (b) G. Cordier, H. Schaefer, and M. Stelter, Z. Naturforsch., B40, 1100 (1985); (c) G. Cordier, H. Schaefer, and M. Stelter, Z. Naturforsch., B39, 727 (1984)Google Scholar
7 Bobev, S., Fritschb, V., Thompsonb, J. D., Sarraob, J. L., Eckc, B., Dronskowski, R., Kauzlarich, S. M., J. Solid State Chem., 178, 1071–79 (2005)Google Scholar
8(a) Cordier, G., Savelsberg, G., and Schaefer, H., Z. Naturforsch., B37, 975 (1982); (b) G. Cordier, H. Schaefer, and M. Stelter, Z. Naturforsch., B40, 1100 (1985)Google Scholar
9 Cordier, G., Schaefer, H., and Stelter, M., Z. Naturforsch., B39, 727 (1984)Google Scholar
10(a) Jeon, H.-H., Ha, H.-P., Hyun, D.-B., and Shim, J.-D., J. Phys. Chem. Solids, 4, 579 (1991); (b) L. R. Testardi, J. N. Bierly, Jr., and F. J. Donahoe, J. Phys. Chem. Solids, 23, 1209 (1962)Google Scholar