Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:01:12.802Z Has data issue: false hasContentIssue false

Young's Modulus Variation with Thickness of Thin Films

Published online by Cambridge University Press:  01 February 2011

L. G. Zhou
Affiliation:
Department of Mechanical, Aerospace & Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A.
Hanchen Huang*
Affiliation:
Department of Mechanical, Aerospace & Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A.
*
* electronic mail: [email protected]
Get access

Abstract

This paper describes atomistic determinations of the Young's modulus of free standing thin films, or nanoplates. Using a combination of analytical formulation and molecular statics simulations, we show that the Young's modulus of a nanoplate may either increase or decrease with the thickness. It is the competition of bond saturation and bond loss on surfaces that dictates the increase or decrease. Taking Cu as an example, we demonstrate that the Young's modulus is larger than its bulk counterparts for nanoplates having some surfaces and loading directions, and smaller for others.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Xia, Y. and Yang, P. eds., special issue of Adv. Mater. 15 (5), (2003)Google Scholar
[2] Villain, P., Goudeau, P., Renault, P.O. and Badawi, K. F., Appl. Phys. Lett. 81, 4365 (2002);Google Scholar
Hurley, D. C., Tewary, V. K., Richards, A. J., Thin Solid Films 398, 326 (2001);Google Scholar
Goudeau, P., Renault, P. O., Villain, P., Coupeau, C., Pelosin, V., Boubeker, B., Badawi, K. F., Thiaudiere, D., and Gailhanou, M., Thin Solid Films 398, 496 (2001).Google Scholar
[3] Renault, P. O., Le Bourhis, E., Villain, P., Goudeau, P., Badawi, K. F., and Faurie, D., Appl. Phys. Lett. 83, 473 (2003).Google Scholar
[4] Sun, C. T. and Zhang, H., J. Appl. Phys. 93, 1212 (2003).Google Scholar
[5] Van Workum, K. and de Pablo, J.J., Phys. Rev. E67, 031601 (2003).Google Scholar
[6] Miller, R.E. and Shenoy, V. B., Nanotechnology 11, 139 (2000).Google Scholar
[7] Daw, M. S. and Baskes, M. I., Phys. Rev. B29, 6443 (1984).Google Scholar
[8] Jones, J. E., Proc. Roy. Soc. Lond. A106, 463 (1924).Google Scholar
[9] Mishin, Y., Mehl, M. J., Papaconstantopoulos, D., Voter, A. F., and Kress, J., Phys. Rev. B63, 224106 (2001).Google Scholar
[10] Huang, H. and Wang, J., Appl. Phys. Lett. 83, 4752 (2003);Google Scholar
Huang, H., Woo, C. H., Wei, H. L., and Zhang, X. X., Appl. Phys. Lett. 82, 1272 (2003).Google Scholar
[11] Tersoff, J., Phys. Rev. B37, 6991 (1988).Google Scholar
[12] Krivtsov, A. M. and Morozov, N.F., Phys. Soli. Stat. 44, 2260 (2002).Google Scholar