Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T15:59:03.508Z Has data issue: false hasContentIssue false

Yield Stress Anomaly in B2 FeAl

Published online by Cambridge University Press:  15 February 2011

K. Yoshimi
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–77, Japan
S. Hanada
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–77, Japan
M. H. Yoo
Affiliation:
Metals and Ceramics Division, ORNL, Oak Ridge, TN 37831–6115, USA
Get access

Abstract

Our studies on yield stress anomaly of B2 FeAI single crystals are reviewed in this paper. A positive temperature dependence of yield stress, so-called “yield stress anomaly”, is observed in B2 FeAI in which excess vacancies are fully annealed out. Associated with the anomaly, characteristic asymmetry is found between tension and compression. While the strain-rate sensitivity is almost zero in the temperature range of the yield stress anomaly, the stress relaxation becomes significant with increasing temperature, indicating that a recovery process is thermally activated. It is ascertained by the two-surface trace analysis that slip transition from <111> direction at intermediate temperature to <100> at high temperature occurs around the peak temperature. Even at the peak temperature, in addition, operative slip vector for yielding is confirmed to be predominantly <111> by TEM. Also, it is observed that <111>-type superdislocations are frequently climb-dissociated in the temperature range of the anomaly. APB formation on {111} plane is energetically favorable, which is in agreement with the Flinn's calculation for the B2 superlattice that APB energy on {111} plane is lower than that on {110} plane. Such an anisotropy of APB energy would offer specific driving force for the climb dissociation on <111> superdislocations. On the basis of the observed results, the anomalous strengthening behavior of B2 FeAI single crystals is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Baker, I. and Gaydosh, D. J., Mater. Sei. Eng., 96, 147 (1987).Google Scholar
2. Guo, J. T., Sun, C., Tan, M. H., Li, H. and Lai, W. H., Acta Metall. Sinica A, 3, 249 (1990).Google Scholar
3. Chang, K. -M., Metall. Trans. A, 21 A, 3027 (1990).Google Scholar
4. Xiao, H. and Baker, I., Scripta Metall. Mater., 28, 1411 (1993).Google Scholar
5. Guo, J. T., Jin, O., Yin, W. M. and Wang, T. M., Scripta Metall. Mater., 29, 783 (1993).Google Scholar
6. Yoshimi, K., Hanada, S. and Tokimo, H., Mater. Trans. JIM, 35, 51 (1994).Google Scholar
7. Klein, O. and Baker, I., Scripta Metall. Mater., 30, 1413 (1994).Google Scholar
8. Onuma, T., M. S. Thesis, (Tohoku University. 1995).Google Scholar
9. Morris, D. G., Phil. Mag. A, 71, 1281 (1995).Google Scholar
10. Yoshimi, K. and Hanada, S., in Structural Intermetallics. ed. by Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B. and Nathal, M. V., (TMS, Warrendale, PA, 1993), p. 475.Google Scholar
11. Yoshimi, K., Hanada, S. and Yoo, M. H., Acta Metall. Mater., 43, 4141 (1995).Google Scholar
12. Yoshimi, K., Hanada, S. and Yoo, M. H., Intermetallics, 4, 159 (1996).Google Scholar
13. Matsumoto, N., M. S. Thesis, (Tohoku University, 1994).Google Scholar
14. Carleton, R., George, E. P. and Zee, R. H., Intermetallics, 3, 433 (1995).Google Scholar
15. Yoshimi, K., Hanada, S. and Yoo, M. H., Intermetallics, 4, S159 (1996).Google Scholar
16. Ardley, G. W. and Cottrell, A. H., Proc. Roy. Soc., 219, 328 (1953).Google Scholar
17. Umakoshi, Y., Yamaguchi, M., Namba, Y. and Murakami, K., Acta Metall., 24, 89 (1976).Google Scholar
18. Nohara, A., Izumi, M., Saka, H. and Imura, T., Phys. Stat. Sol. (a), 82, 163 (1984).Google Scholar
19. Lawley, A., Vidoz, E. A. and Cahn, R. W., Acta Metall., 9, 287 (1961).Google Scholar
20. Stoloff, N. S. and Davies, R. G., Acta Metall., 12, 473 (1964).Google Scholar
21. Hanada, S., Watanabe, S., Sato, T. and Izumi, O., Scripta Metall., 15, 1345 (1981).Google Scholar
22. Inden, G. and Pepperhoff, W., Z. Metallkde., 81, 770 (1990).Google Scholar
23. Morris, D. G., Joye, J. C. and Leboeuf, M., Phil. Mag. A, 69, 961 (1994).Google Scholar
24. Nagpal, P. and Baker, I., Scripta Metall. Mater., 25, 2577 (1991).Google Scholar
25. Umakoshi, Y. and Yamaguchi, M., Phil. Mag. A, 41, 573 (1980).Google Scholar
26. Umakoshi, Y. and Yamaguchi, M., Phil. Mag. A, 44, 711 (1981).Google Scholar
27. Morris, D. G., Peguiron, D. and Nazmy, M., Phil. Mag. A, 71, 441 (1995).Google Scholar
28. Saka, H. and Kawase, M., Phil. Mag. A, 49, 525 (1984).Google Scholar
29. Matsumoto, A. and Saka, H., Phil. Mag. A, 67, 217 (1993).Google Scholar
30. Kear, B. H. and Wilsdorf, H. G. F., Trans. TMS-AIME, 224, 382 (1962).Google Scholar
31. Thornton, P. H., Davies, R. G. and Johnston, T. L., Metall. Trans., 1, 207 (1970).Google Scholar
32. Takeuchi, S. and Kuramoto, E., Acta Metall., 21, 415 (1973).Google Scholar
33. Morgand, P., Mouturat, P. and Sainfort, G., Acta Metall., 16, 867 (1968).Google Scholar
34. Schröer, W., Mecking, H. and Hartig, Ch., in Intermetallic Compounds, ed. by Izumi, O., (JIM, Sendai, Japan, 1991), p. 567.Google Scholar
35. Park, J. W., Moon, I. G. and Yu, J., J. Mater. Sci, 26, 3062 (1991).Google Scholar
36. Rösner, H., Molenat, G., Kolbe, M. and Nembach, E., Mater. Sci. Eng., A192/193, 793 (1995).Google Scholar
37. Flinn, P. A., Trans. TMS-AIME, 218, 145 (1960).Google Scholar
38. Weber, D., Meurtin, M., Paris, D., Fourdeux, A. and Lesbats, P., J. Phys. C7, 38, 332 (1977).Google Scholar
39. Junqua, N., Desoyer, J. C. and Moine, P., Phys. Stat. Sol. (a), 18, 387 (1973).Google Scholar
40. Fourdeux, A. and Lesbats, P., Phil. Mag. A, 45, 81 (1982).Google Scholar
41. Yoshimi, K., Hanada, S., Onuma, T. and Yoo, M. H., Phil. Mag. A, 73, 443 (1996).Google Scholar
42. Marcinkowski, M. J. and Brown, N., J. Appl. Phys., 33, 537 (1962).Google Scholar
43. Mendiratta, M. G., Ehlers, S. K. and Lipsitt, H. A., Metall. Trans. A, 18A, 509 (1987).Google Scholar
44. Saka, H. and Zhu, Y. M., Phil. Mag. A, 51, 629 (1985).Google Scholar
45. Zhu, Y. M. and Saka, H., Phil. Mag. A, 59, 661 (1989).Google Scholar
46. Dirras, G., Beauchamp, P. and Veyssiére, P., Phil. Mag. A, 65, 815 (1992).Google Scholar
47. Brown, N., Phil. Mag., 4, 693 (1959).Google Scholar
48. Bradley, A. J. and Jay, A. H., Proc. Roy. Soc. A, 136, 210 (1932).Google Scholar
49. Lawley, A. and Chan, R. W., J. Phys. Chem. Solids., 20, 204 (1961).Google Scholar
50. Eguchi, T., Matsuda, H., Oki, K., Kiyoto, S. and Yasutake, K., Trans. JIM, 8, 174 (1967).Google Scholar
51. Leamy, H. J., Gibson, E. D. and Kayser, F. X., Acta Metall., 15, 1827 (1967).Google Scholar
52. Beauchamp, P., Dirras, G. and Veyssiére, P., Phil. Mag. A, 65, 477 (1992).Google Scholar
53. Köster, W. and Gödecke, T., Z. Metallkde., 71, 765 (1980).Google Scholar