Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T23:02:51.507Z Has data issue: false hasContentIssue false

YBa2 Cu(3-x)CoxOy- A Substrate Material for YBCO Superconductors

Published online by Cambridge University Press:  26 February 2011

J. D. Vienna
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory. Argonne. IL 60439, USA New York State College of Ceramics, Alfred University, Alfred. NY 14802, USA
U. Balachandran
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory. Argonne. IL 60439, USA
W. Cermignani
Affiliation:
New York State College of Ceramics, Alfred University, Alfred. NY 14802, USA
R. B. Poeppel
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory. Argonne. IL 60439, USA
J. A. Taylor
Affiliation:
New York State College of Ceramics, Alfred University, Alfred. NY 14802, USA
Get access

Abstract

The physical properties of the ceramic YBa2Cu(3-x)CoxOy have been investigated in order to evaluate its usefulness as a substrate material for YBCO superconductors. YBa2Cu(3-x)CoxOy has been found to be thermally and chemically compatible with 123 and displays adequate electrical properties for a substrate material. A material with the nominal composition of YBa2Cu2.2CO0.8O7 was investigated, extensively. The mechanical properties of this material were found to be poor, e.g., tensile strength was only 60 MPa. A semiconductor-like behavior was observed with a room-temperature resistivity of 70 mμ.cm and a resistivity equal to 4 × 106 mn.cm at 77K. [ Key words: YBa2Cu3Oy, cobalt substitution, substrate, electrical properties, thermal properties, processing]

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cermignani, W., thesis, Alfred University (1966).Google Scholar
2. Cheung, C. T. and Ruckenstein, E., J. Mater. Res. 4, 1 (1989).Google Scholar
3. Komatsu, T., Tanaka, O., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L1686 (1988).Google Scholar
4. Dorris, S. E., Lanagan, M. T., Moffatt, D. M., Leu, H. J., Youngdahl, C. A., Balachandran, U., Cazzato, A., Bloomberg, D. E., and Goretta, K. C., Jpn. J. Appl. Phys. 28, L1415 (1989).Google Scholar
5. Balachandran, U., Poeppel, R. B., Emerson, J. E., Johnson, S. A., Lanagan, M. T., Youngdahl, C. A., Shi, D., and Goretta, K. C., Mater. Lett. 8, 454 (1989)Google Scholar
6. Chen, N., Shi, D., and Goretta, K. C.. J. Appl. Phys. 66, 2485 (1989).Google Scholar
7. Routbort, J. L., Rothman, S. J., Chen, N., Baker, J. E., and Mundy, J. N., Phys. Rev. B. 43. 5489 (1991).Google Scholar
8. Tarascón, J. M., Barboux, P., Miceli, P. F., Green, L. H., Hull, G. W., Eibschutz, M., and Sunshine, S. A., Phys. Rev. B. 37, 7458 (1988).Google Scholar
9. Kulkami, R. G., Baldha, G. J., Bichile, G. K., Kubrkar, D. G., and Deshmukh, S., Appl. Phys. Lett. 59, 1386 (1991).Google Scholar
10. Bringley, J. F., Chen, T. M., Averil, B. A., Wong, K. M., and Poon, S. J., Phys. Rev. B. 38, 2432 (1988).Google Scholar
11. Aoki, R., Takahashi, S., Murakami, H., Nakamura, T., Takagi, Y., and Liang, R., Physica C. 157, 405 (1988).Google Scholar