Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T01:59:22.673Z Has data issue: false hasContentIssue false

X-ray Diffraction Study of Laser-Material Interactions with an Ultrafast Table-Top X-ray Source

Published online by Cambridge University Press:  10 February 2011

T. Guo
Affiliation:
Dept. of Chem. and Biochem., University of California, San Diego, La Jolla, CA 92093-0339
C. Rose-Petruck
Affiliation:
Dept. of Chem. and Biochem., University of California, San Diego, La Jolla, CA 92093-0339
R. X. Jimenez
Affiliation:
Dept. of Chem. and Biochem., University of California, San Diego, La Jolla, CA 92093-0339
J. A. Squier
Affiliation:
ECE Department, University of California, San Diego, La Jolla, CA 92093-0339
B. C. Walker
Affiliation:
Dept. of Chem. and Biochem., University of California, San Diego, La Jolla, CA 92093-0339
K. R. Wilson
Affiliation:
Dept. of Chem. and Biochem., University of California, San Diego, La Jolla, CA 92093-0339
C. P. J. Barty
Affiliation:
Institute for Nonlinear Science, University of California, San Diego, La Jolla, CA 92093-0339
Get access

Abstract

X-ray diffraction, employing a table-top, laser-driven x-ray source, has been used to investigate laser-material interactions with simultaneous picosecond and subatomic range distance resolution. The x-ray source, consisting of a table-top terawatt laser system and a moving Cu wire target apparatus, generates ˜ 5 × 1010 photons (4π steradians s)−1 of Cu Kα radiation. The lattice dynamics of the (111) planes of GaAs single crystals has been studied after the crystal is exposed to intense femtosecond laser pulses. The diffraction results have yielded information about the timescale of the lattice dynamics in the picosecond range and an upper limit for the width of the xray pulses. Initial strain, defined as the percentage of lattice distortion resulted from the laser illumination, is as high as 0.25% and is followed by an exponential decay with a time constant of ˜ 150 ps. Increases in the diffraction intensity after the laser irradiation have also been observed, likely due to a transition from dynamic to kinematic diffraction associated with degradation of the crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Perry, M. D. and Mourou, G., Science 264, 917 (1994).Google Scholar
2 Murnane, M. M., Kapteyn, H. C., Rosen, M. D. and Falcone, R. W., Science 251, 531 (1991).Google Scholar
3 Saeta, P., Wang, J.-K., Siegal, Y., Bloembergen, N., and Mazur, E., Phys. Rev. Lett. 67, 1023 (1991).Google Scholar
4 Bergsma, J. P., Coladonato, M. H., Edelsten, P. M., Kahn, J. D., Wilson, K. R. and Fredkin, D. R., J. Chem. Phys. 84, 6151 (1986).Google Scholar
5 Ben-Nun, M., Cao, J., and Wilson, K. R., J. Phys. Chem. (1997), in press.Google Scholar
6 Rentzepis, P. M., Editor, Time-Resolved Electron and X-ray Diffraction, Proc. SPIE 2521 (1995)Google Scholar
7 Wark, J., Contemp. Phys. 37, 205 (1996).Google Scholar
8 Larsson, J., Chang, Z., Judd, E., Schuck, P. J., Falcone, R. W., Heimann, P. A., Bucksbaum, P. H., Murnane, M. M., Lee., R. W., Machacek, A., Wark, J. S., Liu, X. and Shan, B., Opt. Lett. 22, 1012 (1997).Google Scholar
9 Srajer, V., Teng, T.-Y., Ursby, T., Pradervand, C., Ren, Z., Adachi, S., Schildkamp, W., Bourgeois, D., Wulff, M. and Moffat, K., Science 274, 1726 (1996).Google Scholar
10 Larsson, J., Judd, E., and Falcone, R. W., X-ray Lasers 1996 Conference, IOP Publishing Ltd., Lund, Sweden (1996).Google Scholar
11 Larson, B. C., White, C. W., Noggle, T. S., and Mills, D., Phys. Rev. Lett. 48, 337 (1982).Google Scholar
12 Chen, P., Tomov, I. V. and Rentzepis, P. M., J. Chem. Phys. 104, 10001 (1996).Google Scholar
13 Kieffer, J.-C., Chaker, M., Matte, J. P., Pépin, H., Côté, C. Y., Beaudoin, Y., Johnston, T. W., Chien, C. Y., Coe, S., Mourou, G. and Peyrusse, O., Phys. of Fluids, B 5, 2676 (1993).Google Scholar
14 Schoenlein, R. W., Leemans, W. P., Chin, A. H., Volfbeyn, P., Glover, T. E., Balling, P., Zolotorev, M., Kim, K.-J., Chattopadhyay, S. and Shank, C. V., Science 274, 236 (1996).Google Scholar
15 Rischel, C., Rousse, A., Uschmann, I., Albouy, P.-A., Geindre, J.-P., Audebert, P., Gauthier, J.-C., Föster, E., Martin, J.-L. and Antonetti, A., Nature 390, 490 (1997).Google Scholar
16 Nenner, I. Synchrotron Radiation and Applications in Applications of High Field and Short Wavelength Sources VII OSA Technical Digest Series. 7 38 (1997).Google Scholar
17 Stampfli, P. and Bennemann, K. H., Phys Rev. B 49, 7299 (1994).Google Scholar
18 Guo, T., Rose-Petruck, C., Jimenez, R. X., Raksi, F., Squier, J. A., Walker, B. C., Wilson, K. R., and Barty, C. P. J., Proc. SPIE 3157, 84 (1997).Google Scholar
19 Barty, C. P. J., Guo, T., Le Blanc, C., Ráksi, F., Rose-Petruck, C., Squier, J., Wilson, K. R., Yakovlev, V. V. and Yamakawa, K. Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification. Opt. Lett. 21 668 (1996).Google Scholar
20 Klug, H. P. and Alexander, L. E. X-ray Diffraction Proceduresf or Polycrystallinea nd Amorphous Materials. Ch. 3, John Wiley & Sons, New York, (1974).Google Scholar
21 Larson, B. C., Tischler, J. Z. and Millis, D. M., Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation. J. Mater. Res., 1 144 (1986).Google Scholar
22 Guo, T. et al., to be published.Google Scholar