No CrossRef data available.
Article contents
Work Function Controlled Printed Metal Alloy Pattern Prepared by Using Pressure Annealing Technique
Published online by Cambridge University Press: 04 February 2011
Abstract
We have developed the pressure annealing technique for fabricating low work function metal pattern on plastic substrate. In general, the difficulty to print conductive low work function metal patterns is caused by the insulating metal oxide layer covering on metal particles included in metal paste. The pressure annealing technique can destruct the metal oxide layer and can form conductive layer on printed metal pattern. Further, we have confirmed that a binary solid solution is easily formed on metal patterns including two kinds of metal particles by using the pressure annealing technique. Changing the composition ratio of the binary metal paste led to the work function control of the pressure-annealed metal patterns. Formation of the binary solid solution was confirmed by using XRD spectra, and work function values were measured by using photoelectron emission spectra. In the case of the binary metal paste of Cu and Zn, we have succeeded in controlling work function from 3.8 eV to 5.0 eV. Since the Cu-Zn paste is composed of relatively low price metals, this would be applicable to large-scale flexible electronic devices.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1288: Symposium G – Novel Fabrication Methods for Electronic Devices , 2011 , mrsf10-1288-g09-07
- Copyright
- Copyright © Materials Research Society 2011