Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T23:27:56.711Z Has data issue: false hasContentIssue false

Wireless sensor array system for combinatorial screening of sensor materials

Published online by Cambridge University Press:  26 February 2011

William Morris
Affiliation:
[email protected], GE Global Research, Bldg K-1 Rm 2D63, 1 Research Circle, Niskayuna, NY, 12309, United States
Radislav Potyrailo
Affiliation:
[email protected], United States
Get access

Abstract

Screening of materials arrays for their viscoelastic, gas-sorbing, and electrical properties is important for a variety of practical applications ranging from sensor to protective coatings. Complex impedance analysis of the materials arrays is an attractive approach to analyze these materials properties. We developed a wireless proximity sensor array system for combinatorial screening of these types of materials and demonstrated its applicability for sensor materials. In the developed system, sensor materials are applied onto an array of resonators and arranged for performance testing in a test chamber. Each resonator is coupled to a receiver antenna. An array of these antennas is read with a single scanning transmitter antenna or an array of transmitter antennas. Such high-throughput screening approach of sensor materials permits their evaluation in complex environments where additional wiring is not desirable or adds a prohibitively complex design.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Radeva, E. I.; Avramov, I. D., Mat. Sci. Eng. C 2000, 12, 7176.Google Scholar
(2) Ong, K. G.; Grimes, C. A.; Robbins, C. L.; Singh, R. S., Sens. Actuators A 2001, 93, 3343.Google Scholar
(3) Ong, K. G.; Wang, J.; Singh, R. S.; Bachas, L. G.; Grimes, C. A., Biosens. Bioelectron. 2001, 16, 305312.Google Scholar
(4) Harpster, T. J.; Stark, B.; Najafi, K., Sens. Actuators A 2002, 95, 100107.Google Scholar
(5) Ong, K. G.; Grimes, C. A., Sens. Actuators A 2002, 101, 4961.Google Scholar
(6) Budinger, T. F., Annu. Rev. Biomed. Eng. 2003, 5, 383412.Google Scholar
(7) Janata, J.; Josowicz, M., Nature Materials 2002, 2, 1924.Google Scholar
(8) Dickinson, T. A.; Walt, D. R.; White, J.; Kauer, J. S., Anal. Chem. 1997, 69, 34133418.Google Scholar
(9) Apostolidis, A.; Klimant, I.; Andrzejewski, D.; Wolfbeis, O. S., J. Comb. Chem. 2004, 6, 325331.Google Scholar
(10) Chojnacki, P.; Werner, T.; Wolfbeis, O. S., Microchim. Acta 2004, 147, 8792.Google Scholar
(11) Potyrailo, R. A., Macromol. Rapid Comm. 2004, 25, 7794.Google Scholar
(12) Potyrailo, R. A., Polymeric Materials Science and Engineering. Polymer Preprints 2004, 90, 797798.Google Scholar
(13) Potyrailo, R. A., Angew. Chem. Int. Ed. 2006, in press,Google Scholar
(14) Ballantine, D. S., Jr.; White, R. M.; Martin, S. J.; Ricco, A. J.; Frye, G. C.; Zellers, E. T.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications; Academic Press: San Diego, CA, 1997, pp 436.Google Scholar
(15) Thompson, M.; Stone, D. C. Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization; Wiley: New York, NY, 1997, pp 196.Google Scholar
(16) Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Rev. Sci. Instrum. 2004, 75, 21772186.Google Scholar
(17) Potyrailo, R. A.; Sivavec, T. M., Anal. Chem. 2004, 76, 70237027.Google Scholar