Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T11:25:54.673Z Has data issue: false hasContentIssue false

When Small is Different: The Case of Membranes Inside Tubes

Published online by Cambridge University Press:  11 July 2012

Eric Perim
Affiliation:
Applied Physics Department, State University of Campinas, Campinas-SP, Sao Paulo, Brazil
Alexandre F. Fonseca
Affiliation:
UNESP – Sao Paulo State University, Department of Physics, Bauru, Sao Paulo, Brazil.
Douglas S. Galvão
Affiliation:
Applied Physics Department, State University of Campinas, Campinas-SP, Sao Paulo, Brazil
Get access

Abstract

Recently, classical elasticity theory for thin sheets was used to demonstrate the existence of a universal structural behavior describing the confinement of sheets inside cylindrical tubes. However, this kind of formalism was derived to describe macroscopic systems. A natural question is whether this behavior still holds at nanoscale. In this work, we have investigated through molecular dynamics simulations the structural behavior of graphene and boron nitride single layers confined into nanotubes. Our results show that the class of universality observed at macroscale is no longer observed at nanoscale. The origin of this discrepancy is addressed in terms of the relative importance of forces and energies at macro and nano scales.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hall, L. J., Coluci, V. R., Galvao, D. S., Kozlov, M. E., Zhang, M., Dantas, S. O., and Baughman, R. H., Science 320. 504 (2008).CrossRefGoogle Scholar
Coluci, V. R., Fonseca, A. F., Galvao, D. S., and Daraio, C.; Phys. Rev. Lett. 100, 086807 (2008).CrossRefGoogle Scholar
Bettini, J., Sato, F., Coura, P. Z., Dantas, S. O., Galvão, D. S., Ugarte, D.; Nature Nanotechnology 1, 183 (2006).CrossRefGoogle Scholar
Rodrigues, V., Sato, F., Galvão, D. S., Ugarte, D.; Phys. Rev. Lett. 99, 255501 (2007).CrossRefGoogle Scholar
Romero, V., Witten, T. A., Cerda, E.; Proc. R. Soc. A 464, 2847 (2008).CrossRefGoogle Scholar
Novoselov, K. et al. ., Science 306, 666 (2004).CrossRefGoogle Scholar
Song, L. et al. ., Nano Lett. 10, 3209 (2010).CrossRefGoogle Scholar
Meyer, J. C., Chuvilin, A., Algara-Siller, G., Biskupek, J., and Kaiser, U., Nano Lett. 9, 2683 (2009).CrossRefGoogle Scholar
Jin, C., Lin, F., Suenaga, K., and Iijima, S., Phys. Rev. Lett. 102, 195505 (2009).CrossRefGoogle Scholar
B-C-N and Related Nanostructures, Ed. Yap, Y.K., (Springer, 2009).Google Scholar
Bacon, R., J. Appl. Phys. 31, 283 (1960).CrossRefGoogle Scholar
Viculis, L. M., Mack, J. J., Kaner, R. B., Science 299, 1361 (2003).CrossRefGoogle Scholar
Shioyama, H. and Akita, T., Carbon 41, 179 (2003).CrossRefGoogle Scholar
Xie, X., Ju, L., Feng, X., Sun, Y., Zhou, R., Liu, K., Fan, S., Li, Q., and Jiang, K., Nano Lett. 9, 2565 (2009).CrossRefGoogle Scholar
Tomanék, D., Phys. B 323, 86 (2002).CrossRefGoogle Scholar
Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvão, D. S., and Baughman, R. H., Nano Lett. 4, 881 (2004).CrossRefGoogle Scholar
Perim, E. and Galvao, D. S., Nanotechnology 20, 335702 (2009).CrossRefGoogle Scholar
Braga, S. F., Coluci, V. R., Baughman, R. H., and Galvao, D. S., Chem. Phys. Lett. 441, 78 (2007).CrossRefGoogle Scholar
Rappé, A. K., Casewit, C. J.; Colwell, K. S., Goddard, W. A. III; and Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992).CrossRefGoogle Scholar