Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:18:15.867Z Has data issue: false hasContentIssue false

When Does a Crystal Conduct Heat Like a Glass?

Published online by Cambridge University Press:  21 March 2011

B. C. Sales
Affiliation:
Solid State Division, Oak Ridge National Laboratory Oak Ridge, TN 37831-6056
B. C. Chakoumakos
Affiliation:
Solid State Division, Oak Ridge National Laboratory Oak Ridge, TN 37831-6056
V. Keppens
Affiliation:
National Center for Physical Acoustics, The University of Mississippi Oxford, Mississippi 38677
R. Jin
Affiliation:
Solid State Division, Oak Ridge National Laboratory Oak Ridge, TN 37831-6056
D. Mandrus
Affiliation:
Solid State Division, Oak Ridge National Laboratory Oak Ridge, TN 37831-6056
J. R. Thompson
Affiliation:
Solid State Division, Oak Ridge National Laboratory Oak Ridge, TN 37831-6056
Get access

Abstract

Semiconducting crystalline materials that are poor conductors of heat are important as thermoelectric materials and for technological applications involving thermal management. In the present article neutron scattering, electrical and thermal transport, heat capacity, magnetic and acoustic measurements are reported on single crystals of three semiconductors with the type I clathrate structure: Ba8Ga16Ge30, Sr8Ga16Ge30 and Eu8Ga16Ge30. Taken together these measurements suggest specific structural features that result in a crystal with the lowest possible thermal conductivity, namely that of a glass with the same chemical composition. Weakly bound atoms that rattle within oversized atomic cages in a crystal result in a low thermal conductivity, but the present data show that both rattling atoms and tunneling states are necessary to produce a true glass-like thermal conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slack, G. A. in CRC Handbook of Thermoelectrics, edited by Rowe, D. M. (Chemical Rubber, Boca Raton, FL 1995), Chap. 34, p. 407.Google Scholar
2. Sales, B. C., Mandrus, D., and Williams, R. K., Science, 272 1325 (1996).Google Scholar
3. Fleurial, J.-P, Borshchevsky, A., Caillat, T., Morelli, D. T., and Meisner, G. P. in Proceedings of the Fifteenth International Conference on Thermoelectrics, (Pasadena CA., IEEE, Piscataway, NJ 1996), p 91.Google Scholar
4. Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V. and Thompson, J. R., Phys. Rev. B, 56, 15081 (1997).Google Scholar
5. Morelli, D. T. and Meisner, G. P., J. Appl. Phys., 77, 3777 (1995).Google Scholar
6. Zeller, R. C. and Pohl, R. O., Phys. Rev. B. 4, 2029 (1971).Google Scholar
7. Amorphous Solids: Low Temperature Properties, edited by Phillips, W. A. (Springer-Verlag, Berlin, 1981).Google Scholar
8. Nolas, G. S., Cohn, J. L., Slack, G. A., and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).Google Scholar
9. Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H., and Slack, G. A., Phys. Rev. Lett. 82, 779 (1999).Google Scholar
10. Eisenmann, B., Schafer, H., and Zagler, R., J. Less. Common Metals 118, 43 (1986).Google Scholar
11. Kuhl, B., Czybulka, A., and Schuster, H-U, Z. anorg. allg. Chem. 621, 1 (1998).Google Scholar
12. Nolas, G. S., Weakley, T. J. R., and Cohn, J. L., Chem. Mater. 11, 2470 (1999).Google Scholar
13. Sales, B. C., Chakoumakos, B. C., Jin, R., Thompson, J. R., and Mandrus, D., Phys. Rev. B 63, 245113 (2001).Google Scholar
14. Paschen, S., Carrilo-Cabrera, W., Bentien, A., Tran, V. H., Baenitz, M., Grin, Yu. and Steglich, F., Phys. Rev. B 64, 214404 (2001).Google Scholar
15. Chakoumakos, B. C., Sales, B. C., and Mandrus, D., J. of Alloys and Compounds 322, 127 (2001).Google Scholar
16. Nolas, G. S. and Kendziora, C. A., Phys. Rev. B 62, 7157 (2000).Google Scholar
17. McGuire, M. and Keppens, V., unpublishedGoogle Scholar
18. Dong, J., Sankey, O. F., Ramachandran, G. K., and McMillan, R. F., J. Appl. Phys. 87, 7726 (2000).Google Scholar
19. Anderson, P.W., Halperin, B. I., and Varma, C. M., Phil. Mag. 25, 1 (1972).Google Scholar
20. Keppens, V., Sales, B. C., Mandrus, D., Chakoumakos, B. C., and Laermans, C., Phil. Mag. Lett. 80, 807 (2000).Google Scholar
21. Sales, B. C., Mandrus, D., and Chakoumakos, B. C., Recent Trends in Thermoelectric Research II, Semiconductors and Semimetals Vol. 70, edited by Tritt, T. M. (Academic Press, San Diego, 2001) Chapter 1, pp. 134.Google Scholar