Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T08:22:59.159Z Has data issue: false hasContentIssue false

When A Mild Mannered 1-5 eV Photon Meets A Big 10 eV Bandgap: Studies Of Laser Desorption From Modified Surfaces of Ionic Single Crystals

Published online by Cambridge University Press:  10 February 2011

J. Thomas Dickinson
Affiliation:
Surface Dynamics Laboratory, Washington State University, Pullman, WA 99164-2814
Christos Bandis
Affiliation:
Surface Dynamics Laboratory, Washington State University, Pullman, WA 99164-2814
Stephen C. Langford
Affiliation:
Surface Dynamics Laboratory, Washington State University, Pullman, WA 99164-2814
Get access

Abstract

Exposing wide-bandgap ionic materials to UV and IR photons can produce ion emissions with kinetic energies of several eV, well in excess of the photon energy. Electron emissions are also observed. This implies that these materials possess occupied electronic defect states within the band gap. We have investigated the consequences of a variety of defect-generating stimuli (electron irradiation, laser irradiation, mechanical treatments, and heating) on electron and ion emission from inorganic ionic crystals. These stimuli generate defects that strongly interact with the probe laser on a wide variety of ionic crystals, and dramatically decrease the probe laser intensities required for ion and neutral emissions, laser damage, and plume formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Radziemski, L. J. and Cremers, D. A., Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).Google Scholar
2 Laser Ablation: Principles and Applications; Vol., edited by Miller, J. C. (Springer-Verlag, Berlin, 1994).Google Scholar
3 Ermer, D. R., Langford, S. C., and Dickinson, J. T., J. Appl. Phys. 81, 14951504 (1997).Google Scholar
4 Shin, J. J., Ermer, D. R., Langford, S. C., and Dickinson, J. T., Appl. Phys. A 64, 717 (1997).Google Scholar
5 LeGeros, R. Z. and LeGeros, J. P., J. Crystal Growth 13/14, 476480 (1972).Google Scholar
6 LeGeros, R. Z., Lee, D., Quirolgico, G., Shirra, W. P., and Reich, L., in Scanning Electron Microscopy; Vol. 1993 (SEM Inc., Chicago, IL, 1983), p. 407418.Google Scholar
7 Yamashita, H. and Kato, R., J. Phys. Soc. Jpn. 29, 15571561 (1970).Google Scholar
8 Ermer, D. R., Shin, J.-J., Langford, S. C., Hipps, K. W., and Dickinson, J. T., J. Appl. Phys. 80, 64526466 (1996).Google Scholar
9 Dickinson, J. T., in Experimental Methods in Physical Sciences; Vol. 30, edited by Miller, J. C. and Haglund, R. F. (Academic Press, 1998), p. 139172.Google Scholar
10 Shin, J.-J., Langford, S. C., Dickinson, J. T., and Wu, Y., Nucl. Instrum. Meth. Phys. Res. B 103, 284296 (1995).Google Scholar
11 Dickinson, J. T., Shin, J.-J., and Langford, S. C., Appl. Surf. Sci. 96–98, 326331 (1996).Google Scholar
12 Dickinson, J. T., Langford, S. C., Shin, J. J., and Doering, D. L., Phys. Rev. Lett. 73, 26302633 (1994).Google Scholar
13 Wollbrandt, J., Brückner, U., and Linke, E., Phys. Status Solidi (a) 77, 545552 (1983).Google Scholar
14 Wollbrandt, J., Brückner, U., and Linke, E., Phys. Status Solidi (a) 78, 163168 (1983).Google Scholar
15 Dickinson, J. T., Jensen, L. C., Langford, S. C., and Hirth, J. P., J. Mater. Res. 6, 112125 (1991).Google Scholar
16 Bandis, C., Langford, S. C., Dickinson, J. T., Ermer, D. R., and Itoh, N., J. Appl. Phys 87, 1522(2000).Google Scholar
17 Webb, R. L., Langford, S. C., and Dickinson, J. T., Nucl. Instrum. Meth. Phys. Res. B 103, 297308 (1995).Google Scholar
18 Bandis, C., Scudiero, L., Langford, S. C., and Dickinson, J. T., Surf. Sci. 442, 413419 (1999).Google Scholar
19 Narayanswamy, L. K., Trans. Faraday Soc. 31, 14111412 (1935).Google Scholar
20 Johnson, E. R., The Radiation-Induced Decomposition of the Inorganic Molecular Ions (Gordon and Breach, New York, 1970).Google Scholar
21 Aduru, S., Contarini, S., and Rabalais, J. W., J. Phys. Chem. 90, 16831691 (1986).Google Scholar
22 Hess, W. P., German, K. A. H., Bradley, R. A., and McCarthy, M. I., Appl. Surf. Sci. 96–98, 321325 (1996).Google Scholar
23 Knutsen, K. and Orlando, T. M., Phys. Rev. B 55, 1324613252 (1997).Google Scholar
24 Webb, R. L., Jensen, L. C., Langford, S. C., and Dickinson, J. T., J. Appl. Phys. 74, 23232337 (1993).Google Scholar
25 Webb, R. L., Jensen, L. C., Langford, S. C., and Dickinson, J. T., J. Appl. Phys. 74, 23382346 (1993).Google Scholar
26 Dickinson, J. T., Jensen, L. C., Webb, R. L., Dawes, M. L., and Langford, S. C., J. Appl. Phys. 74, 37583767 (1993).Google Scholar
27 Dawes, M., Langford, S. C., and Dickinson, J. T., Appl. Surf. Sci. 127–129, 8187 (1998).Google Scholar
28 Curry, N. A. and Jones, S. W., Chem. Soc. (London) A 1971, 37253729 (1971).Google Scholar
29 Ohta, M., Tsutsumi, M., and Ueno, S., J. Crystal Growth 47, 135136 (1979).Google Scholar
30 Ohta, M. and Tsutsumi, M., J. Crystal Growth 56, 652658 (1982).Google Scholar
31 Tanaka, H., Koga, N., and Galwey, A. K., J. Chem. Ed. 72, 251256 (1995).Google Scholar
32 Kawaguchi, Y., Dawes, M. L., Langford, S. C., and Dickinson, J. T., J. Appl. Phys. 88 (2000) (in press).Google Scholar
33 Bandis, C., Langford, S. C., and Dickinson, J. T., Appl. Phys. Lett. 76, 421(2000).Google Scholar
34 Kawaguchi, Y., Dawes, M. L., Langford, S. C., and Dickinson, J. T., Appl. Phys. A 69, S621–S624 (1999).Google Scholar
35 Verduch, A. G., Sanz, V., Agramunt, J. V., and Beltrán, V., Am. Ceram. Soc. Bull. 75, 6064 (1996).Google Scholar
36 Ordonez, E. and Twilley, J., in Anal. Chem.; Vol. 69 (1997), p. 416A422A.Google Scholar