Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T04:43:52.513Z Has data issue: false hasContentIssue false

What Makes Good Templates for HVPE GaN Growth?

Published online by Cambridge University Press:  01 February 2011

C. E. C. Dam
Affiliation:
[email protected], Radboud University Nijmegen, Toernooiveld 1, Nijmegen, N/A, 6525 ED, Netherlands
Andrzej P. Grzegorczyk
Affiliation:
[email protected], Radboud University Nijmegen, Experimental Solid State Physics III, Netherlands
Paul R. Hageman
Affiliation:
[email protected], Radboud University Nijmegen, Experimental Solid State Physics III, Netherlands
Poul K. Larsen
Affiliation:
[email protected], Radboud University Nijmegen, Experimental Solid State Physics III, Netherlands
Get access

Abstract

MOCVD templates grown on sapphire with a Gallium Treatment Step (GTS) instead of a low temperature AlN or GaN nucleation layer are used for HVPE growth. Four templates are used with varying times of MOCVD buffer layer growth. 25 μm GaN is grown with HVPE on these templates. The HVPE layers are studied with optical microscopy and X-ray diffraction (XRD). The results show that the thickness of the buffer layer is not important for the quality of the HVPE grown layer once sufficient nucleation sites for HVPE growth are present. The excellent quality of the templates with GTS for HVPE growth is shown with a 100 μm thick HVPE layer on a 2” template. No cracks in either sapphire or GaN are visible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miskys, C.R., Kelly, M.K., Ambacher, O. and Stutzmann, M., Phys. Status Solidi C 6 (2003) 1627 CrossRefGoogle Scholar
2. Kim, H.M., Oh, J.E. and Kang, T.W., Mater. Lett. 47 (2001) 276 CrossRefGoogle Scholar
3. Nakamura, S., Jpn. J. Appl. Phys. 30 (1991) L1705 CrossRefGoogle Scholar
4. Amano, H., Sawaki, N., Aksaki, I. and Toyoda, T., Appl. Phys. Lett. 48 (1986) 353 CrossRefGoogle Scholar
5. Valcheva, E., Paskova, T., Abrashev, M.V., Persson, P.Å.O., Pasov, P.P., Goldys, E.M., Beccard, R., Heuken, M. and Monemar, B., Mater. Sci. Eng. B 82 (2001) 35 CrossRefGoogle Scholar
6. Richter, E., Hennig, Ch., Kissel, H., Sonia, G., Zeimer, U. and Weyers, M., Phys. Status Solidi C 2 (2005) 2099 CrossRefGoogle Scholar
7. Habel, F., Brückner, P., Tsay, J.-D., Liu, W.-Y., Scholz, F., Schmitz, D., Alam, A. and Heuken, M., Phys. Status Solidi C 2 (2005) 2049 CrossRefGoogle Scholar
8. Grzegorczyk, A.P., Hageman, P.R., Weyher, J.L. and Larsen, P.K., J. Cryst. Growth, 283 (2005) 72 CrossRefGoogle Scholar
9. Dam, C.E.C., Grzegorczyk, A.P., Hageman, P.R., Dorsman, R., Kleijn, C.R. and Larsen, P.K. J. Cryst. Growth 271 (2004) 192 CrossRefGoogle Scholar