Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T08:53:53.191Z Has data issue: false hasContentIssue false

Wetting Pattern on TiO2 Nanostructure Films and its Application as a Template for Selective Materials Growth

Published online by Cambridge University Press:  09 March 2011

Y. K. Lai
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. [email protected] State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. [email protected]
Y. Yang
Affiliation:
State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. [email protected]
Y. X. Huang
Affiliation:
State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. [email protected]
Z. Q. Lin
Affiliation:
State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. [email protected]
Y. X. Tang
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. [email protected]
D. G. Gong
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. [email protected]
C. J. Lin
Affiliation:
State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. [email protected]
Z. Chen
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. [email protected]
Get access

Abstract

The present paper describes an unconventional approach to fabricate superhydrophilic-superhydrophobic template on the TiO2 nanotube structured film by a combination of electrochemical anodization and photocatalytic lithography. Based on template with extreme wetting contrast, various functional nanostructures micropattern with high resolution have been successfully fabricated. The resultant micropattern has been characterized with scanning electron microscopy, optical microscopy, X-ray photoelectron spectroscopy. It is shown that functional nanostructures can be selectively grown at superhydrophilic areas which are confined by the hydrophobic regions, indicating that the combined process of electrochemically self-assembly and photocatalytic lithography is a very promising approach for constructing well-defined templates for various functional materials growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Nature 388, 431 (1997).Google Scholar
2. Ichimura, K., Oh, S.K., and Nakagawa, M., Science 288, 1624 (2000).Google Scholar
3. Lai, Y.K., Gao, X.F., Zhuang, H.F., Huang, J.Y., Lin, C.J., and Jiang, L., Adv. Mater. 21, 3799 (2009).Google Scholar
4. Gao, X.F., and Jiang, L., Nature 432, 36 (2004).Google Scholar
5. Lafuma, A., and Quéré, D., Nat. Mater. 2, 457 (2003).Google Scholar
6. Liu, X.J., Ye, Q.A., Yu, B., Liang, Y.M., Liu, W.M., and Zhou, F., Langmuir 26, 12377 (2010).Google Scholar
7. Kumar, A., Biebuyck, H.A., Abbott, N.L., and Whitesides, G.M., J. Am. Chem. Soc. 114, 9188 (1992).Google Scholar
8. Yang, Y., Lai, Y.K., Zhang, Q.Q., Wu, K., Zhang, L.H., Lin, C.J., and Tang, P.F., Colloids Surf. B 79, 309 (2010).Google Scholar
9. Lai, Y.K., Chen, Y.C., Tang, Y.X., Gong, D.G., Chen, Z., and Lin, C.J., Electrochem. Commun. 11, 2268 (2009).Google Scholar
10. Jae, P.L., and Myung, M.S., J. Am. Chem. Soc. 126, 28 (2004).Google Scholar
11. Xu, S., and Liu, G.Y., Langmuir 13, 127 (1997).Google Scholar
12. Zhang, X.T., Sato, O., and Fujishima, A., Langmuir 20, 6065 (2004).Google Scholar
13. Teshima, K., Sugimura, H., Takano, A., Inoue, Y., and Takai, O., Chem. Vapor Depos. 11, 347 (2005).Google Scholar
14. Tadanaga, K., Morinaga, J., Matsuda, A., and Minami, T., Chem. Mater. 12, 590 (2000).Google Scholar
15. Balaur, E., Macak, J.M., Taveira, L., and Schmuki, P., Electrochem. Commun. 7, 1066 (2005).Google Scholar
16. Zhao, J.C., Wu, T.X., Wu, K.Q., Oikawa, K., Hidaka, H., and Serpone, N., Environ. Sci. Technol. 32, 2394 (1998).Google Scholar
17. Lai, Y.K., Sun, L., Chen, Y.C., Zhuang, H.F., Lin, C.J., and Chin, J.W., J. Electrochem. Soc. 153, D123 (2006).Google Scholar
18. Zhuang, H.F., Lin, C.J., Lai, Y.K., Sun, L., and Li, J., Environ. Sci. Technol. 41, 4735 (2007).Google Scholar
19. Li, F.B., and Li, X.Z., Appl. Catal. A 228, 15 (2002).Google Scholar
20. Sirghi, L., Nakamura, M., Hatanaka, Y., and Takai, O., Langmuir 17, 8199 (2001).Google Scholar
21. Yoshitake, H., Sugihara, T., and Tatsumi, T., Chem. Mater. 14, 1023 (2002).Google Scholar
22. Foong, T.R.B., Shen, Y.D., Hu, X., and Sellinger, A., Adv. Funct. Mater. 20, 1390 (2010).Google Scholar
23. Zwilling, V., Aucouturier, M., and Darque-Ceretti, E., Electrochim. Acta 45, 921 (1999).Google Scholar
24. Gong, D.W., Grimes, C.A., and Varghese, O.K., J. Mater. Res. 16, 3331 (2001).Google Scholar
25. Lai, Y.K., Zhuang, H.F., Xie, K.P., Gong, D.G., Tang, Y.X., Sun, L., Lin, C.J., and Chen, Z., New J. Chem. 34, 1335 (2010).Google Scholar
26. Lai, Y.K., Huang, J.Y., Zhuang, H.F., Subramaniam, V.P., Tang, Y.X., Gong, D.G., Sundar, L., Sun, L., Chen, Z., and Lin, C.J., J. Hazard. Mater. 184, 855 (2010).Google Scholar
27. Lin, Z.Q., Lai, Y.K., Hu, R.G., Li, J., Du, R.G., and Lin, C.J., Electrochim. Acta 55, 8717 (2010).Google Scholar
28. Lai, Y.K., Sun, L., Chen, C., Nie, C.G., Zuo, J., and Lin, C. J., Appl. Surf. Sci. 252, 1101 (2005).Google Scholar
29. Lai, Y.K., Lin, C.J., Huang, J.Y., Zhuang, H.F., Sun, L., and Nguyen, T., Langmuir 24, 3867 (2008).Google Scholar
30. Lai, Y.K., Lin, C.J., Wang, H., Huang, J.Y., Zhuang, H.F., and Sun, L., Electrochem. Commun. 10, 387 (2008).Google Scholar
31. Hu, R., Lin, C.J., and Shi, H.Y., J. Biomed. Mater. Res. Part A 80, 687 (2007).Google Scholar
32. Wang, H., Lin, C.J., and Hu, R., Appl. Surf. Sci. 255, 4074 (2009).Google Scholar
33. Lai, Y.K., Huang, J.Y., Gong, J.J., Huang, Y.X., Wang, C.L., Chen, Z., and Lin, C.J., J. Electrochem. Soc. 156, D480 (2009).Google Scholar
34. Lai, Y.K., Zhuang, H.F., Sun, L., Chen, Z., and Lin, C.J., Electrochim. Acta 54, 6536 (2009).Google Scholar
35. Lee, J.P., Kim, H.K., Park, C.R., Park, G., Kwak, H.T., Koo, S.M., and Sung, M.M., J. Phys. Chem. B 107, 8997 (2003).Google Scholar
36. Lai, Y.K., Lin, Z.Q., Huang, J.Y., Sun, L., Chen, Z., and Lin, C.J., New J. Chem. 34, 44 (2010).Google Scholar
37. Yasuda, K., Macak, J.M., Berger, S., Ghicov, A., and Schmuki, P., J. Electrochem. Soc. 154, C472 (2007).Google Scholar
38. Lai, Y.K., Lin, Z.Q., Chen, Z., Huang, J.Y., and Lin, C.J., Mater. Lett. 64, 1309 (2010).Google Scholar
39. Huang, Y.X., Lai, Y.K., Lin, L.X., Sun, L., and Lin, C.J., Acta Phys. -Chim. Sin. 26, 2057 (2010).Google Scholar
40. Lai, Y.K., Huang, Y.X., Huang, J.Y., Wang, H., Chen, Z., and Lin, C.J., Colliods Surf. B 76, 117 (2010)Google Scholar