Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T00:29:07.344Z Has data issue: false hasContentIssue false

Wet Oxidation of Epitaxial Ge.36Si.64 on (100)Si

Published online by Cambridge University Press:  22 February 2011

W. S. Liu
Affiliation:
California Institute of Technology, Pasadena, CA 91106
G. Bai
Affiliation:
California Institute of Technology, Pasadena, CA 91106
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91106
C. H. Chern
Affiliation:
University of California, Los Angeles, CA 90024
V. Arbet
Affiliation:
University of California, Los Angeles, CA 90024
K. L. Wang
Affiliation:
University of California, Los Angeles, CA 90024
Get access

Abstract

The thermal oxidation of epitaxial Ge.36Si.64 on (100)Si is investigated experimentally for a wet ambient at 700°C and 1000°C. A pure silicon dioxide layer with pile-up of Ge behind the oxide is formed at 1000°C. At 700°C, however, both Ge and Si are oxidized. The Ge is included uniformly into the oxide layer without changing the initial Ge/Si ratio. The result at 1000°C follows the thermodynamical picture which predicts the same result at 700°C also, contrary to observation. The different result at 700°C is due to kinetic constraints which can be explained by different activation energies for the rate of the oxidation reaction and for the Ge or Si diffusivities in GeSi.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. LeGoues, F. K., Rosenberg, R., Nguyen, T., Himpsel, F., and Meyerson, B. S., J. Appl. Phys. 65, 1724 (1989)Google Scholar
2. LeGoues, F. K., Rosenberg, R., and Meyerson, B. S., Appl. Phys. Lett. 54, 664 (1989)Google Scholar
3. Nayak, D., Kamjoo, K., Woo, J. C. S., Park, J. S., and Wang, K. L., Appl. Phys. Lett. 56, 66 (1990)CrossRefGoogle Scholar
4. Nayak, D. K., Kamjoo, K., Park, J. S., Woo, J. C. S., and Wang, K. L., Appl. Phys. Lett. 57, 369 (1990)Google Scholar
5. Fathy, D., Holland, O. W., and White, C. W., Appl. Phys. Lett. 51, 1337 (1987)CrossRefGoogle Scholar
6. Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965)CrossRefGoogle Scholar
7. Hirvonen, J. and Anttila, A., Appl. Phys. Lett. 35, 703 (1979)Google Scholar
8. Raisanen, J., Hirvonen, J. and Anttila, A., Solid-State Electron. 24, 333 (1981)Google Scholar
9. Mcvay, G. L. and Ducharme, A. R., Phys. Rev. B9, 627 (1974)Google Scholar
10. Widmer, H. and Gunther-Mohr, G. R., Helv. Phys. Acta 34, 635 (1961)Google Scholar
11. Strydom, W. J. and Lombaard, J. C., Thin Solid Films 131, 215 (1985)Google Scholar