Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:20:24.785Z Has data issue: false hasContentIssue false

Wave Polymerization During Vapor Deposition of Porous Parylene-N Dielectric Films

Published online by Cambridge University Press:  10 February 2011

James Erjavec
Affiliation:
Department of Chemical, Bio, and Materials Engineering, Arizona State University, Mail Code 6006, Tempe, AZ 85287–6006
John Sikita
Affiliation:
Department of Chemical, Bio, and Materials Engineering, Arizona State University, Mail Code 6006, Tempe, AZ 85287–6006
Stephen P. Beaudoin
Affiliation:
Department of Chemical, Bio, and Materials Engineering, Arizona State University, Mail Code 6006, Tempe, AZ 85287–6006
Gregory B. Raupp
Affiliation:
Department of Chemical, Bio, and Materials Engineering, Arizona State University, Mail Code 6006, Tempe, AZ 85287–6006
Get access

Abstract

Parylene-N films vapor deposited near liquid nitrogen temperature (77 K) undergo a unique ‘wave’ polymerization process in which a rapidly moving reaction front is apparent as the film changes from translucent to optically opaque. This moving reaction front produces a highly porous polymer film. The porosity of these films is approximately 80%. By capturing the wave process on video we have quantified the moving ‘wave’ velocity, which averages 11 cm/s. Timeaveraged deposition rates of the resulting opaque, porous films are more than 8 μm/min. This rate is more than two orders of magnitude greater than the measured deposition rates of nonporous films that are deposited at higher temperatures, at otherwise fixed conditions of monomer delivery rate and deposition chamber pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. National Technology Roadmap for Semiconductors, SIA, 1997.Google Scholar
2. Lang, C.L., Yang, G. R., Moore, J.A., and Lu, T-M, Mat. Res. Soc. Symp. Proc., 381, p. 45 (1995).10.1557/PROC-381-45Google Scholar
3. Crivello, J.V., Mat. Res. Soc. Symp. Proc., 381, p. 51 (1995).10.1557/PROC-381-51Google Scholar
4. Beach, W. F., Austin, T. M., 2nd. International SAMPE Electronics Conference, p. 25 (1988).Google Scholar
5. Dixit, G.A., Taylor, K.J., Singh, A., Lee, C.K., Shinn, G.B., Konecni, A., Hsu, W.Y., Brennan, K., and Chang, M., 1996 Symposium on VLSI Technology Digest of Technical Papers, p. 86 (1996).Google Scholar
6. Chow, L. A., You, T., Dunn, B., Tu, K. N., and Chaing, C., Proc. MRS Symp. Low Dielectric Constant Materials, in press.Google Scholar
7. Ganguli, R., Lu, Y., Anderson, M. T., Drewien, C. A., Brinker, C. J., Soyez, H., Dunn, B., Huang, M. H., and Zink, J. I., Nature, 389, p. 364 (1997).Google Scholar
8. Gorham, W. F., Journal of Polymer Science: Part A-1, 4, p. 3027 (1966).10.1002/pol.1966.150041209Google Scholar
9. Surendran, G., Gazicki, M., James, W. J., and Yasuda, H., Journal of Polymer Science: Part A: Polymer Chemistry, 25, p. 1481 (1987).10.1002/pola.1987.080250604Google Scholar
10. Ganguli, S., Agrawal, H., Wang, B., McDonald, J. F., Lu, T.-M., Yang, G.-R., and Gill, W. N., J. Vac. Sci. Technol. A 15, p. 3138 (1997).10.1116/1.580858Google Scholar
11. Beach, W. F., Lee, C., Basset, D., Austin, T., and Olson, R., Encyclopedia of Polymer Science, 17, p. 990 (1988).Google Scholar
12. Beach, W. F., Macromolecules, 11, p. 72 (1978).10.1021/ma60061a014Google Scholar
13. Gazicki, M., Surendran, G., James, W. J., and Yasuda, H. K., J. Polym. Sci. Polym. Chem. Ed., 24, p. 215 (1986).10.1002/pola.1986.080240203Google Scholar
14. Yang, G.-R., Ganguli, S., Karcz, J., Gill, W. N., and Lu, T.-M., Journal of Crystal Growth 183, p. 385 (1998).10.1016/S0022-0248(97)00428-4Google Scholar