Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:27:48.030Z Has data issue: false hasContentIssue false

Water Concentration Influence on Catalytic Growth of Carbon Nanotubes in a Suspended Bed Reactor

Published online by Cambridge University Press:  30 March 2012

V.Z. Mordkovich
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 7A Centralnaya street, Troitsk 142190, Russia INFRA Technologies Ltd., Mokhovaya 11-3B, Moscow 125993, Russia
A.R. Karaeva
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 7A Centralnaya street, Troitsk 142190, Russia INFRA Technologies Ltd., Mokhovaya 11-3B, Moscow 125993, Russia
M.A. Khaskov
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 7A Centralnaya street, Troitsk 142190, Russia
I.G. Solomonik
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 7A Centralnaya street, Troitsk 142190, Russia
E.B. Mitberg
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 7A Centralnaya street, Troitsk 142190, Russia INFRA Technologies Ltd., Mokhovaya 11-3B, Moscow 125993, Russia
B.A. Kulnitskiy
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 7A Centralnaya street, Troitsk 142190, Russia
I.A. Perezhogin
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 7A Centralnaya street, Troitsk 142190, Russia
Get access

Abstract

One of the most important problems in the synthesis of carbon nanotubes is the problem of controlling their morphology, namely: length, aspect ratio, alignment, etc. Catalytic synthesis of carbon nanotubes in a suspended bed reactor allowed to study the possibilities of controlling the growth of nanotubes by introducing a certain amount of water vapor and carbon-containing materials in the reaction zone. The synthesized long carbon nanotubes were studied by Raman spectroscopy, transmission and scanning electron microscopy. We found that water concentration influences both yield and the structure of nanotubes. It is shown that the yield of centimeter-long nanotubes can be maximized at an optimum H2O/C ratio, while deviations dramatically change morphology and thickness of the nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mordkovich, V. Z., Karaeva, A. R., Zaglyadova, S. V., Maslov, I. A., Don, A. K., Mitberg, E. B. and Kharitonov, D. N., Mat. Res. Soc. Symp. Proc. 1142 : JJ05, 5 (2009).Google Scholar
2. Mordkovich, V. Z., Karaeva, A. R., Maslov, I. A. and Don, A. K., Russia Patent RU2393276 (2010).Google Scholar
3. Mordkovich, V. Z. and Karaeva, A. R., Full., Nanot. Carb. Nanostr. 18, 516522 (2010).Google Scholar
4. Mordkovich, V. Z., Khim. Prom. Segodnya 2, 1221(2003).Google Scholar
5. Thostenson, E. T., Zhifeng, R. and Chou, T.-W., Comp. Sci. and Technol. 61, 18991912 (2001).Google Scholar
6. Endo, M., Km, Y. A., Hayashi, T., Nishimura, K., Matusita, T., Miyashita, K. and Dresselhaus, M. S., Carbon 39, 12871297 (2001).Google Scholar
7. Cheng, J., Zou, X., Li, F., Zhang, H., Ren, P., Zhu, G. and Cheng, J., Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 38, 201203 (2008).Google Scholar
8. Mordkovich, V. Z., Karaeva, A. R., Khaskov, M. A. and Ermolaev, I. S., Chem. Chem. Tech. in Russia 53, 8489 (2010).Google Scholar
9. Endo, M., Oberlin, A. and Koyama, T., Jpn J. Appl. Phys. 16, 15191523 (1977).Google Scholar
10. Tibbets, G. G., Crystal Growth 73, 431438 (1985).Google Scholar
11. Morgan, P., Carbon Fiber and their Composites (CRC Press, 2005) 1153 p.Google Scholar
12. Hofmann, M., Synthesis and Fluid Interaction of Ultra-long Carbon Nanotubes, Ph.D. Thesis (Massachusets Institute of Technology, 2008) 50 p.Google Scholar
13. Siemens, W., J. Chem. Soc. 21, 279310 (1868).Google Scholar
14. Wang, H., Feng, J., Hu, X., and Ming Ng, Ka, J. Phys. Chem. C 111, 1261712624 (2007).Google Scholar
15. Chakrabarti, S., Kume, H., Pan, L., Nagasaka, T. and Nakayama, Y., J. Phys. Chem C 111, 19291934 (2007).Google Scholar
16. Hata, K., Futaba, D. N., Mizuno, K. H., Namai, T., Yumura, M. and Iijima, S., Science 306, 13621364 (2004).Google Scholar
17. Li, X.-K., Westwood, A., Brown, A., Brydson, R. and Rand, B., New Carb. Mater. 23, 351355 (2008).Google Scholar
18. Li, Ya-Li, Kinloch, I. A. and Windle, A. H., Science 304, 276278 (2004).Google Scholar
19. Rao, C. N. R. and Sen, R., Chem. Commun. 15, 15251526 (1998).Google Scholar
20. Karaeva, A. R., Mordkovich, V. Z., Khaskov, M. A., Mitberg, E. B., Kulnitskiy, B. A. and Perezhogin, I. A., in Proc. 7th Int. Conf. Carbon, Vladimir, 17-19 Nov. 2010 (Russian Carbon Society, 2010) pp. 163164.Google Scholar
21. Mordkovich, V. Z., Karaeva, A. R., Khaskov, M. A. and Mitberg, E. B., Russia patent application RU2011148461 (2011) (pending).Google Scholar
22. Titov, N. D. and Stepanov, Y. A., Technology of metallurgy (Mach, Moscow, 1974) p. 472.Google Scholar
23. Bustamante, F., Enick, R. M., Cugini, A., Killmeyer, R., Howard, B. H., Rothenberger, K. S., Ciocco, M., Morreale, B. and Chattopadhyay, S., AIChE Journal 50, 10281041 (2004).Google Scholar
25. Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 11261130 (1970).Google Scholar
26. Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M. and Dresselhaus, M. S., Chem. Phys. Lett. 398, 8792 (2004).Google Scholar
27. Wen, C., Jin, ZH, Liu, XX, Li, X., Guan, JQ, Sun, DY, Lin, YR, Tang, SY, Zhou, G. and Lin, JD, Spectroscopy and Spectral Analysis 25, 681684 (2005)Google Scholar