Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T21:54:39.256Z Has data issue: false hasContentIssue false

Visible Luminescence in Si/SiO2 Superlattices

Published online by Cambridge University Press:  15 February 2011

D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada KlA 0R6
J.-M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada KlA 0R6
P. D. Grant
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada KlA 0R6
H. J. Labbé
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada KlA 0R6
Z. H. Lu
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada KlA 0R6
J. Stapledon
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada KlA 0R6
B. T. Sullivan
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada KlA 0R6
Get access

Abstract

Amorphous Si/SiO2 superlattices with periodicities from 2 to 5 nm have been grown on (100) Si wafers by several different techniques: molecular beam epitaxy, magnetron sputtering, and plasma enhanced chemical vapor deposition (PECVD). With the first two methods little or no hydrogen was incorporated during growth and visible photoluminescence (PL) was obtained at wavelengths from 520 to 800 nm. The shift in the PL peak position with Si layer thickness is consistent with quantum confined emission. Annealing the sputtered superlattices at temperatures up to 1100°C produced a very bright red PL that is similar in intensity to that found in porous Si. The PL was also considerably enhanced by deposition on aluminum-coated glass substrates. For large numbers of periods (e.g., 425) the PL was strongly modulated in intensity owing to optical interference within the superlattice. Similar quantum-confined PL was also observed in the PECVD grown superlattices, where the amorphous Si layers were heavily hydrogenated. The blue-red cathodoluminescence observed from sputtered superlattices is due primarily to defects in the SiO2 layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iyer, S.S. and Xie, Y.-H., Science 260, 40 (1993).Google Scholar
2.Soref, R.A., J. Vac. Sci. Tech. A14, 913 (1996).Google Scholar
3.Lockwood, D.J., Editor, Light Emission in Silicon (Academic, Orlando, 1997).Google Scholar
4.Soref, R.A., Proc. IEEE 81, 1687 (1993).Google Scholar
5.Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
6.Bensahel, D.C., Canham, L.T. and Ossicini, S., Editors, Optical Properties of Low Dimensional Silicon Structures (Kluwer, Dordrecht, 1993).Google Scholar
7.Lockwood, D.J., Solid State Commun. 92, 101 (1994).Google Scholar
8.Feng, Z.C. and Tsu, R., Editors, Porous Silicon (World Scientific, Singapore, 1994).Google Scholar
9.Kanemitsu, Y., Physics Reports 263, 1 (1995).Google Scholar
10. DLockwood, J., Aers, G.C., Allard, L.B., Bryskiewicz, B., Charbonneau, S., Houghton, D.C., McCaffrey, J.P., and Wang, A., Can. J. Phys. 70, 1184 (1992).Google Scholar
11.Tang, Y.S., Wilkinson, C.D.W., Sotomayor Torres, C.M., Smith, D.W., Whall, T.E. and Parker, E.H.C., Superlatt. Microstruct. 12, 535 (1992).Google Scholar
12.Chu, A.S., Zaidi, S.H. and Brueck, S.R.J., Appl. Phys. Lett. 63, 905 (1993).Google Scholar
13.Tang, Y.S., Sotomayor Torres, C.M., Nilsson, S., Dietrich, B., Kissinger, W., Whall, T.E., Parker, E.H.C., Ni, W.-X., Hansson, G.V., Presting, H. and Kibbel, H., J. Electron. Mater. 25, 287 (1996) and references therein.Google Scholar
14.Nassiopoulos, A.G., Grigoropoulos, S. and Papadimitriou, D., in Advanced Luminescent Materials, edited by Lockwood, D.J., Fauchet, P.M., Koshida, N. and Brueck, S.R.J. (Electrochemical Society, Pennington, 1996), p. 296.Google Scholar
15.Sunamura, H., Usami, N., Shiraki, Y. and Fukatsu, S., Appl. Phys. Lett. 66, 3024 (1995).Google Scholar
16.Abeles, B. and Tiedje, T., Phys. Rev. Lett. 51, 2003 (1983).Google Scholar
17.Abeles, B. and Tiedje, T., Semicond. Semimetals 21, Part C, 407 (1984).Google Scholar
18.Tiedje, T., Abeles, B. and Brookes, B.G., Phys. Rev. Lett. 54, 2545 (1985).Google Scholar
19.Wilson, B.A., Taylor, C.M. and Harbison, J.P., Phys. Rev. B 34, 8733 (1986).Google Scholar
20.Miyazaki, S., Ihara, Y. and Hirose, M., Phys. Rev. Lett. 59, 125 (1987).Google Scholar
21.Yang, L. and Abeles, B., Appl. Phys. Lett. 51, 264 (1987).Google Scholar
22.Kalem, S., Phys. Rev. B 37, 8837 (1988).Google Scholar
23.Hattori, K., Mori, T., Okamoto, H. and Hamakawa, Y., Phys. Rev. Lett. 60, 825 (1988).Google Scholar
24.Hattori, K., Mori, T., Okamoto, H. and Hamakawa, Y., Appl. Phys. Lett. 53, 2170 (1988).Google Scholar
25.Yang, L., Abeles, B., Eberhardt, W., Stasiewski, H. and Sondericker, D., Phys. Rev. B 39, 3801 (1989).Google Scholar
26.Zayats, A.V., Repeyev, Yu.A., Nikogosyan, D.N. and Vinogradov, E.A., J. Lumin. 52, 335 (1992).Google Scholar
27.Jiang, J., Chen, K., Huang, X., Li, Z. and Feng, D., Solid State Commun. 92, 227 (1994).Google Scholar
28.Tong, S., Liu, X. and Bao, X., Appl. Phys. Lett. 66, 469 (1995).Google Scholar
29.Arnaud d'Avitaya, F., Vervoort, L., Bassani, F., Ossicini, S., Fasolino, A. and Bernardini, F., Euro. Phys. Lett. 31, 25 (1995).Google Scholar
30.Vervoort, L., Bassani, F., Mihalcescu, I., Vial, J.C. and Arnaud d'Avitaya, F., Phys. Stat. Sol. (b) 190, 123 (1995).Google Scholar
31.Grützmacher, D.A., Steigmeier, E.F., Auderset, H., Morf, R., Delley, B. and Wessicken, R., Mat. Res. Soc. Symp. Proc. 358, 833 (1995).Google Scholar
32.Wickboldt, P., Pang, D., Chen, J.H., Cheong, H.M. and Paul, W., J. Non-Crystal. Solids 198–200, 813 (1996).Google Scholar
33.Baribeau, J.-M., Lockwood, D.J. and Lu, Z.H., Mat. Res. Soc. Symp. Proc. 382, 259 (1995).Google Scholar
34.Sullivan, B.T., Lockwood, D.J., Labbé, H.J. and Lu, Z.H., Appl. Phys. Lett. 69, 3149 (1996).Google Scholar
35.Lu, Z.H., Lockwood, D.J. and Baribeau, J.-M., Nature 378, 258 (1995).Google Scholar
36.Lu, Z.H., Lockwood, D.J. and Baribeau, J.-M., Solid State Electron. 40, 197 (1996).Google Scholar
37.Lockwood, D.J., Lu, Z.H. and Baribeau, J.-M., Phys. Rev. Lett. 76, 539 (1996).Google Scholar
38.Lockwood, D.J., Baribeau, J.-M. and Lu, Z.H., in Advanced Luminescent Materials, edited by Lockwood, D.J., Fauchet, P.M., Koshida, N. and Brueck, S.R J. (Electrochemical Society, Pennington, 1996), p. 296.Google Scholar
39.Vig, J.R., in Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology, and Applications, edited by Kern, W. (Noyes, Park Ridge, 1993), p. 233.Google Scholar
40.Sullivan, B.T. and Dobrowolski, J.-A., Appl. Opt. 32, 2351 (1993).Google Scholar
41.Sullivan, B.T. and Byrt, K.L., Appl. Opt. 34, 5684 (1995).Google Scholar
42.Prokeš, S.M. and Carlos, W.E., J. Appl. Phys. 78, 2671 (1995).Google Scholar
43.Skuja, L., Solid State Commun. 84, 613 (1992).Google Scholar
44.Munekuni, S., Yamanaka, T., Shimogaichi, Y., Tohmon, R., Ohki, Y., Nagasawa, K. and Hama, Y., J. Appl. Phys. 68, 1212 (1990).Google Scholar
45.Lockwood, D.J. and Wang, A.G., Solid State Commun. 94, 905 (1995).Google Scholar
46.Stevens Kalceff, M.A. and Phillips, M.R., Phys. Rev. B 52, 3122 (1995).Google Scholar
47.Read, A.J., Needs, R.J., Nash, K.J., Canham, L.T., Calco, P.D.J. and Qtiesh, A., Phys. Rev. Lett. 69, 1232 (1992).Google Scholar
48.Buda, F., Kohanoff, J., and Parrinello, M., Phys. Rev. Lett. 69, 1272 (1992).Google Scholar
49.Ohno, T., Shiraishi, K., and Ogawa, T., Phys. Rev. Lett. 69, 2400 (1992).Google Scholar
50.Van de Walle, C.G. and Northrup, J.E., Phys. Rev. Lett. 70, 1116 (1993).Google Scholar
51.Wang, X., Huang, D., Ye, L., Yang, M., Hao, P., Fu, H., Hou, X., and Xie, X., Phys. Rev. Lett. 71, 1262 (1993).Google Scholar
52.Hybertsen, M.S., Phys. Rev. Lett. 72, 1514 (1994).Google Scholar
53.Zunger, A. and Wang, L.-W., Appl. Surf. Sci. 102, 350 (1996).Google Scholar
54.Properties of Amorphous Silicon, 2nd Ed., (IEE, London, 1989), pp. 269286.Google Scholar
55.Barber, H.D., Solid State Electron. 10, 1039 (1967).Google Scholar