Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:23:54.615Z Has data issue: false hasContentIssue false

Vibrational Properties of Silver Nanoparticles and Nanocrystalline Materials

Published online by Cambridge University Press:  14 March 2011

Ralf Meyer*
Affiliation:
Département de Physique, Université de Montréaland Groupe de Recherche en Physique et Technologie des Couches Minces (GCM) C.P. 6128 succursale centre-ville, Montréal (Québec) H3C 3J7, Canada
Get access

Abstract

The vibrational density of states of silver in the form of a free cluster, a single crystal and a nanocrystalline material has been calculated with the help of molecular-dynamics simulations. The model for the nanocrystalline material was derived by the simulation of pressureless sintering of nanometer sized silver particles. The results show a broadening of the vibrational density of states in the case of the cluster and the nanocrystalline material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Edelstein, A. S. and Cammarata, R. C., editors, Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol, 1996.Google Scholar
2. Trampenau, J., Bauszus, K., Petry, W., and Herr, U., Nanostruct. Mater. 6, 551 (1995).Google Scholar
3. Fultz, B., Robertson, J. L., T. A. S., , Nagel, L. J., and Spooner, S., J. Appl. Phys. 79, 8318 (1996).Google Scholar
4. Fultz, B., Ahn, C. C., Alp, E. E., Sturhahn, W., and Toellner, T. S., Phys. Rev. Lett. 79, 937 (1997).Google Scholar
5. Frase, H. N., Nagel, L. J., Robertson, J. L., and Fultz, B., Phil. Mag. B 75, 335 (1997).Google Scholar
6. Stuhr, U., Wipf, H., Andersen, K. H., and Hahn, H., Phys. Rev. Lett. 81, 1449 (1998).Google Scholar
7. Bonnetti, E., Pasquini, L., Sampaolesi, E., Deriu, A., and Cicognani, G., J. Appl. Phys. 88, 4571 (2000).Google Scholar
8. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
9. Meyer, R., Prakash, S., Entel, P., and Lewis, L. J., to be published.Google Scholar
10. Lovesey, S. W., Condensed matter physics: dynamic correlations, volume 61 of Frontiers in Physics, Benjamin/Cummings, Menlo Park, Calif., 2 edition, 1986.Google Scholar
11. Hoover, W. G., Phys. Rev. A 31, 1695 (1985).Google Scholar
12. Parrinello, M. and Rahman, A., Phys. Rev. Lett. 45 (1980).Google Scholar
13. Verlet, L., Phys. Rev. 159 (1967).Google Scholar
14. Kara, A. and Rahman, T. S., Phys. Rev. Lett. 81, 1453 (1998).Google Scholar
15. Meyer, R., Prakash, S., and Entel, P., Capillary pressure and phonon density of states in Ag, Au, Cu, and Ni nanoparticles, in Proceedings of the Symposium on Structure and Dynamics of Heterogeneous Systems II, Duisburg, 2000, to appear in Phase Transitions.Google Scholar