Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:03:41.409Z Has data issue: false hasContentIssue false

Vibrational Localization and Vibrational Spectra in Amorphous Silicon

Published online by Cambridge University Press:  28 February 2011

R. Biswas
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, Iowa 50011
A. M. Bouchard
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, Iowa 50011 Ames Laboratory U. S. Department of Energy, Iowa State University, Ames, Iowa 50011
W. A. Kamitakahara
Affiliation:
Ames Laboratory U. S. Department of Energy, Iowa State University, Ames, Iowa 50011
G. S. Grest
Affiliation:
Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801
C. M. Soukoulis
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, Iowa 50011 Ames Laboratory U. S. Department of Energy, Iowa State University, Ames, Iowa 50011
Get access

Abstract

Amorphous silicon structures have been generated by quenching liquid silicon configurations using molecular-dynamics simulations. Localized vibrational modes have been identified in these models. The presence of under-coordinated atoms in these a-Si models leads to extra resonant modes at low frequencies. The vibrational densities of states, and dynamic structure factors for localized, resonant and extended modes, are discussed and compared with neutron scattering data. The amorphous networks have also been adapted to model amorphous silicon-germanium systems. Densities of states and localization characteristics have been calculated for a-SixGe1-x alloys and a-Si/a-Ge superlattices, and are compared to Raman measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kamitakahara, W. A., Soukoulis, C. M., Shanks, H. R., Buchenau, U., and Grest, G. S., Phys Rev. B 36, 6539 (1987).CrossRefGoogle Scholar
2. Biswas, R., Grest, G. S., and Soukoulis, C. M., Phys. Rev. B 36, 7437 (1987).CrossRefGoogle Scholar
3. Biswas, R. and Hamann, D. R., Phys. Rev. B 36, 6434 (1987); Phys. Rev. Lett. 55, 2001 (1985).CrossRefGoogle Scholar
4. Ding, K. and Andersen, H. C., Phys. Rev. B 34, 6987 (1986).CrossRefGoogle Scholar
5. Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 1392 (1985).CrossRefGoogle Scholar
6. Winer, K., Phys. Rev. B 35, 2366 (1987).CrossRefGoogle Scholar
7. Luedtke, W. D. and Lan-dman, U., Phys. Rev. B 37, 4656 (1988).CrossRefGoogle Scholar
8. Kluge, M. D., Ray, J. R., Rahman, A., Phys. Rev. B 36, 4234 (1987).CrossRefGoogle Scholar
9. Stillinger, F. and Weber, T., Phys. Rev. B 31, 5263 (1985).Google Scholar
10. Kelieres, P. and Tersoff, J., Phys. Rev. Lett. 61, 562 (1988).CrossRefGoogle Scholar
11. Tersoff, J., Phys. Rev. Lett. 56, 632 (1986); Phys. Rev B 37, 6991 (1988).CrossRefGoogle Scholar
12. Pantelides, S., Phys. Rev. Lett. 57, 2979 (1986); ibid. 58, 1344 (1987).CrossRefGoogle Scholar
13. Keating, P. N., Phys. Rev. 145, 637 (1966).CrossRefGoogle Scholar
14. Biswas, R., Bouchard, A. M., Kamitakahara, W., Soukoulis, C. M. and Grest, G. S., Phys. Rev. Lett. 60, 2280 (1988)CrossRefGoogle Scholar
15. Dean, P., Rev. Mod. Phys. 44, 127 (1972). R. J. Bell, Rep. Prog. Phys. 35, 1315 (1972).CrossRefGoogle Scholar
16. Bouchard, A. M., Biswas, R., Kamitakahara, W., Soukoulis, C. M. and Prest, G. S., Phys. Rev. B 38, xxx (Nov 15, 1988).CrossRefGoogle Scholar
17. Lannin, J. S., in Amorphous and Liquid Semiconductors (Taylor and Francis, London, 1974), p. 1245.Google Scholar
18. Persans, P. D., Ruppert, A. F., Abeles, B., Tiedje, T., Stasiewski, H., Phys. Rev. B 32, 5558 (1985); J. Phys. (Paris) Colloq. 8, 597 (19850).CrossRefGoogle Scholar