Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:58:43.349Z Has data issue: false hasContentIssue false

The Vibrational Density-of-States of Nanobundles of Single Wall Carbon Nanotubes: An Inelastic Neutron Scattering Study

Published online by Cambridge University Press:  10 February 2011

S. Rols
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR CNRS 5581), Université Montpellier II, 34095 Montpellier Cedex 5, France. Institut Laue-Langevin, 38042 Grenoble, France.
Z. Benes
Affiliation:
Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia PA 19104, USA.
J.L. Sauvajol
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR CNRS 5581), Université Montpellier II, 34095 Montpellier Cedex 5, France.
P. Papanek
Affiliation:
Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg MD 20899, USA.
E. Anglaret
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR CNRS 5581), Université Montpellier II, 34095 Montpellier Cedex 5, France.
G. Coddens
Affiliation:
Laboratoire Leon Brillouin (CEA/CNRS), CE Saclay, 91191 Gif-sur-Yvette Cedex, France.
A.J. Dianoux
Affiliation:
Institut Laue-Langevin, 38042 Grenoble, France.
J.E. Fischer
Affiliation:
Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia PA 19104, USA.
Get access

Abstract

The phonon density of states of single-wall carbon nanotubes (SWNT) was measured by inelastic neutron scattering (INS) in a large energy range (0 to 120 meV). New information on the vibrational dynamics of SWNT is reported and compared with calculated density-of-sates. At lower frequencies (< 12 meV) we observe a peculiar energy dependence which we attribute to contributions from inter-tube modes in the 2D lattice of SWNT bundles, and also from effects of intertube coupling on the intra-tube excitations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E. and Smalley, R. E., Science 27, 483 (1996).Google Scholar
2. Pimenta, M.A., Marucci, A., Empedocles, S.A., Bawendi, M.G., Hanlon, E.B., Rao, A.M., Eklund, P. C., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. B 58, (1998) R16016 Google Scholar
3. Saito, R., Takeya, T., Kimura, T., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. B 57, 4145 (1998).Google Scholar
4. Kane, C.L. and Mele, E.J., Phys. Rev. Lett. 78, 1932 (1997); C.L. Kane, E.J. Mele, R.S. Lee, J.E. Fischer, P. Petit, H. Dai, A. Thess, R.E. Smalley, A.R.M. Verschueren, S.J. Tans and C. Dekker, Europhys. Lett. 41, 683 (1998).Google Scholar
5. Rinzler, A. G., Liu, J., Nikolaev, P., Huffman, C. B., Rodriguez-Macias, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A. M., Eklund, P. C. and Smalley, R. E., Applied Physics A 67, 29 (1998).Google Scholar
6. Joumet, C., Maser, W.K., Bemier, P., Loiseau, A., Chapelle, M. Lamy de la, Lefrant, S., Deniard, P., Lee, R. and Fischer, J.E., Nature 388, 756 (1997).Google Scholar
7. Rols, S., Almairac, R., Henrard, L., Anglaret, E. and Sauvajol, J.L, Euro. Phys. J. B 10, 263270 (1999)Google Scholar
8. Marshall, W. and Lovesey, S.W., Theory of thermal neutron scattering, Oxford Press, 1971.Google Scholar