Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:21:44.960Z Has data issue: false hasContentIssue false

Vibrational and Electronic Transition in InAs Quantum Dots Formed by Sequential Implantation of in and as in a-SiO2

Published online by Cambridge University Press:  21 February 2011

A. Ueda
Affiliation:
Chemical Physics Laboratory, Physics Department, Fisk University, Nashville, TN 37208, USA
D.O. Henderson
Affiliation:
Chemical Physics Laboratory, Physics Department, Fisk University, Nashville, TN 37208, USA
R. Mu
Affiliation:
Chemical Physics Laboratory, Physics Department, Fisk University, Nashville, TN 37208, USA
Y.-S. Tung
Affiliation:
Chemical Physics Laboratory, Physics Department, Fisk University, Nashville, TN 37208, USA
C. Hall
Affiliation:
Chemical Physics Laboratory, Physics Department, Fisk University, Nashville, TN 37208, USA
Jane G. Zhu
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
C.W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
R.A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Get access

Abstract

The optical, structural, and thermodynamic properties of materials can be changed by reducing their dimensions. We sequentially implanted In and As into fused silica windows in order to investigate the formation and properties of InAs nano-particles. The UV/VIS/NIR, FTIR in mid-IR, and far-IR spectroscopy were mainly used to study the change in electronic transitions and in vibrational modes (phonons) of the nanoparticle InAs. The phonons can be confined to the surface of nanoparticles and have frequencies falling between the transverse and longitudinal optical modes of the bulk material. Thermal annealing developed the formation of InAs quantum dots from as-implanted In+As system. At a certain annealing temperature, we observed a change in UV/VIS transmission spectra and IR reflectance spectra indicating the formation of InAs quantum dots. This is particularly evident from the absorption in the IR, and surface phonon bands are observed confirming the presence of quantum confined InAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tougaw, P.D. and Lent, C.S., J. Appl. Phys. 75, 1818(1994).Google Scholar
2 For example, Wang, Y. and Nerron, N., J. Phys. Chem. 91, 5005(1987); O.I. Micic, Z. Li, G. Mills, J.C. Sullivan, and D. Meisel, J. Phys. Chem. 91, 6221(1987); C.J. Sandroff, S.P. Kelty, and D.M. Hwang, J. Chem. Phys. 85, 5337(1986).Google Scholar
3 Micic, O.I., Curtis, C.J., Jones, K.M., Sprangue, J.R., and Nozik, A.J., J. Phys. Chem. 98, 4966 (1994); R.L. Wells, S.R. Aubuchon, S.S. Kher, and M.S. Lube, Chem. Mater. 7, 793(1995).Google Scholar
4 Wamock, J., and Awschalom, D.D., Phys. Rev. B 32, 5529(1985); D.O. Henderson, R. Mu, Y.-S. Tung, A. Ueda, A. Burger, K.T. Chen, and D.O. Frazier, Mat. Res. Soc. Symp. Proc. 366, 283(1995).Google Scholar
5 For example, Fujii, M., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett 57, 2692(1990); Y. Sasaki and C. Horie, Phys. Rev. B 48, 2009(1993).Google Scholar
6 Shimizu-lwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Appl. Phys. 75, 7779(1994); H. Atwater, K.V. Shcheglov, S.S. Wang, K.J. Vahala, R.C. Flagan, ML. Brongersma, and A. Polman, Mat. Res. Soc. Symp. Proc. 316, 409(1994).Google Scholar
7 White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Zuhr, R.A., Chen, Y., Hembree, D.M. Jr., Magruder, R.H., Henderson, D.O., Mat. Res. Soc. Symp. Proc. 358 175(1995); C.W. White, J.D. Budai, J.G. Zhu, S.P. Withrow, R.A. Zuhr, D.M. Hembree, Jr., D.O. Henderson, A. Ueda, Y.-S. Tung, R. Mu, and R.H. Magruder, J. Appl. Phys. (1995) (under review).Google Scholar
8 Weeks, R.A., in “(Hasses and Amorphous Materials” edited by Zarzicki, J., Chap.6 pp.311373 (Wiley, New York, 1992); S.Y. Park, R.A. Weeks, and R.A. Zuhr, J. Appl. Phys. 77, 6100 (1995).Google Scholar
9 Henderson, D.O., George, M.A., Tung, Y.-S., Mu, R., Burger, A., Morgan, S.H., Collins, W.E., White, C.W., Zuhr, R.A. and Magruder, R.H. III, J. Vac. Sci. Technol. A 13, 1254(1995); D.O. Henderson, S.H. Morgan, R. Mu, W.E. Collins, R.H. Magruder III, C.W. White, and R.A. Zuhr, Mat. Res. Soc. Symp. Proc. 316, 451(1994).Google Scholar
10 Hosono, , J. Appl. Phys. 69, 8079(1990); R.A.B. Devine, J. Non-cryst. Solids 152, 50(1992).Google Scholar
11 Creighton, J.Alan, J. Chem. Soc. Faraday Trans. 87, 3881(1991).Google Scholar
12 Hosono, H., Suzuki, Y., and Abe, Y., J. Non-Cryst. Solids 142, 287(1992).Google Scholar
13 Herzberg, “Spectra of Diatomic Molecules” 2nd ed. pp.504 (D. Van Nostrand Company, Inc, Princeton, New Jersey, 1965).Google Scholar
14 For example, Hayashi, S., Japan. J. Appl. Phys. 23, 665 (1984) and reference therein.Google Scholar