Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:55:09.006Z Has data issue: false hasContentIssue false

Vertical and in-plane electrical transport in InAs/InP semiconductor nanostructures

Published online by Cambridge University Press:  26 February 2011

K. O. Vicaro
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP6165, 13081–790, Campinas-SP, Brazil
J. R. R. Bortoleto
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP6165, 13081–790, Campinas-SP, Brazil
H. R. Gutiérrez
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP6165, 13081–790, Campinas-SP, Brazil
L. Nieto
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP6165, 13081–790, Campinas-SP, Brazil
A. A. G. von Zuben
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP6165, 13081–790, Campinas-SP, Brazil
A. C. Seabra
Affiliation:
LSI-PSI-EPUSP, USP, Av. Prof. Luciano Gualberto, trav. 3, n° 158, 05508–900, São Paulo-SP, Brazil
P. A. Schulz
Affiliation:
Instituto de Física Gleb Wataghin, DFMC, UNICAMP, 13081–790, Campinas-SP, Brazil
M. A. Cotta
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP6165, 13081–790, Campinas-SP, Brazil
Get access

Abstract

Vertical and in-plane electrical transport in InAs/InP semiconductors wires and dots have been investigated by conductive atomic force microscopy (C-AFM) and electrical measurements in processed devices. Localized I-V spectroscopy and spatially resolved current images (at constant bias), carried out using C-AFM in a controlled atmosphere at room temperature, show different conductances and threshold voltages for current onset on the two types of nanostructures. The processed devices were used in order to access the in-plane conductance of an assembly with a reduced number of nanostructures. On these devices, signature of two-level random telegraph noise (RTN) in the current behavior with time at constant bias is observed. These levels for electrical current can be associated to electrons removed from the wetting layer and trapped in dots and/or wires. A crossover from conduction through the continuum, associated to the wetting layer, to hopping within the nanostructures is observed with increasing temperature. This transport regime transition is confirmed by a “temperature-voltage” phase diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Buehler, T. M., Reilly, D. J., Starrett, R. P., Chan, V. C., Hamilton, A. R., Dzurak, A. S., and Clark, R. G., arXiv:cond-mat/0409568 v1, 22 Sep 2004; and REFERENCES therein.Google Scholar
[2] Gutiérrez, H. R., Cotta, M. A., Bortoleto, J. R. R. and de Carvalho, M. M. G., J. Appl. Phys., 92, 7523 (2002).Google Scholar
Gutiérrez, H. R., Cotta, M. A., and de Carvalho, M. M. G., Appl. Phys. Lett. 79, 3854 (2001).Google Scholar
[3] Landau, S. A., Junghans, N., Weiβ, P.-A., Kolbesen, B. O., Olbrich, A., Schindler, G., Hartner, W., Hintermaier, F., Dehm, C., Mazure, C., Appl. Surf. Sci. 157, 387 (2000).Google Scholar
[4] Vicaro, K. O., Cotta, M. A., Gutiérrez, H. R., and Bortoleto, J. R. R., Nanotechnology 14, 509 (2003).Google Scholar
[5] Gutiérrez, H. R., Nakabayashi, D., Silva, P. C., Bortoleto, J. R. R. B., Rodrigues, V., Clerici, J. H., Cotta, M. A., Ugarte, D., Phys. Stat. Sol. A 201 (5), 888 (2004).Google Scholar
[6] Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988).Google Scholar
[7] Mott, N. F., Metal-Insulator Transitions, London: Taylor & Francis Ltd., (1974).Google Scholar
[8] Sheng, P., Abeles, B. and Arie, Y., Phys. Rev. Lett. 31 (1), 44 (1973).Google Scholar