Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T18:55:22.907Z Has data issue: false hasContentIssue false

Vacuum Integrated Fabrication of Buried Heterostructure Edge Emitting Laser Diodes

Published online by Cambridge University Press:  22 February 2011

M. Hong
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D. Vahkshoori
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
L. H. Grober
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. P. Mannaerts
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. D. Wynn
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. S. Freund
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We describe an in-situ fabrication process which combines electron cyclotron resonance (ECR) plasma H2 to clean native oxides, ECR SiCl4 to etch anisotropically, a brief Cl2 chemical etch to remove any near surface damage and contamination, and molecular beam epitaxial (MBE) regrowth. We report the first buried heterostructure (BH) AlGaAs/GaAs/InGaAs edge emitting laser diodes fabricated using this in-situ process. The lasers operate in continuous mode without noticeable degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choquette, K. D., Hong, M., Freund, R. S., Chu, S. N. G., Mannaerts, J. P., and Wetzel, R. C., Appl. Phys. Lett. 60, 1738 (1992).Google Scholar
2. Tsukada, T., J. Appl. Phys. 45, 4899 (1974).Google Scholar
3. Tsang, W. T. and Logan, R. A., Appl. Phys. Lett. 36, 730 (1980).Google Scholar
4. Hong, C. S., Kasemset, D., Kim, M. E., and Milano, R. A., Electron. Lett. 19, 759 (1983).Google Scholar
5. Tsang, W. T. and Logan, R. A., Electron. Lett. 18, 397 (1982).Google Scholar
6. Shimoyama, K., Inoue, Y., Katoh, M., and Gotoh, H., J. Crystal Growth 107, 767 (1991).Google Scholar
7. Yoshizawa, M., Uomi, K., Ohishi, A., Ono, Y., Kawano, T., Nakashima, K., Kajimura, T., Jpn. J. Appl. Phys. 26, L1465 (1987).Google Scholar
8. Choquette, K. D., Hong, M., Freund, R. S., Mannaerts, J. P., Wetzel, R. C., and Leibenguth, R. E., submitted to IEEE Photonic Technol. Lett. (1993).Google Scholar
9. Tsang, W. T., Appl. Phys. Lett. 40, 1046 (1982).Google Scholar
10. Choquette, K. D., Wetzel, R. C., Freund, R. S., and Kopf, R. F., J. Vac. Sci. Technol. B 10, 2725 (1992).Google Scholar
11. Hong, M., Mannaerts, J. P., Grober, L. H., Chu, S. N. G., Luftman, H. S., and Freund, R. S., unpublished results.Google Scholar
12. Hong, M., Freund, R. S., Choquette, K. D., Luftman, H. S., Mannaerts, J. P., and Wetzel, R. C., to be published in Appl. Phys. Lett. (1993).Google Scholar
13. Hong, M., Mannaerts, J. P., Grober, L. H., Chu, S. N. G., Luftman, H. S., Choquette, K. D., and Freund, R. S., submitted to J. Appl. Phys. (1993).Google Scholar
14. Chu, S. N. G. and Sheng, T. T., J. Electrochem. Soc. 131, 2663 (1984).Google Scholar