Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T05:12:55.102Z Has data issue: false hasContentIssue false

Vacancy Properties in Ordered NiGa And NiAl

Published online by Cambridge University Press:  26 February 2011

S.M. Kim*
Affiliation:
Aecl Research, Chalk River Laboratories, Chalk River, Ontario, Koj Jo,Canada
Get access

Abstract

The recently formulated theory of vacancy formation in CsCl-type ordered alloys has been applied to β-NiGa and β-NiAl. The observed Nisublattice vacancy concentrations in these compounds could be well described by the theory. For the first time it is also shown that structural vacancies most likely exist in Ga-rich NiGa and Al-rich NiAl at absolute zero temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bradley, A.J. and Taylor, A., Proc. R. Soc. London 159, 56 (1937).Google Scholar
2. Chang, Y.A. and Neumann, J.P., in Progress in Solid State Chemistry,edited by Rosenblatt, G.M. and Worrell, W.L., Vol. 14 (Pergamon, New York,1983), pp. 221301.Google Scholar
3. Girifalco, A., J. Phys. Chem. Solids 24, 323 (1964).CrossRefGoogle Scholar
4. Krivoglaz, M.A. and Smirnov, A., The Theory of Order-Disorder in Alloys (MacDonald, London, 1964), pp. 1280.Google Scholar
5. Neumann, J.P., Chang, Y.A., and Lee, C.M., Acta. Metall. 24, 593 (1976).Google Scholar
6. Chang, C.Y., Wynblatt, P.P., and Dorn, J.E., Acta. Metall. 24, 811 (1976).CrossRefGoogle Scholar
7. Kim, S.M., Phys. Rev. B 30, 4829 (1984).CrossRefGoogle Scholar
8. Kim, S.M., Phys. Rev. B 33, 1509 (1986).CrossRefGoogle Scholar
9. Kim, S.M., J. Phys. Chem. Solids 49, 65 (1988).Google Scholar
10. Ommen, A.H., Waegemaekers, A., Schlatter, A.C., and Bakker, H., Acta Metall. 29, 123 (1981).Google Scholar
11. Ho, K. and Dodd, R.A., Scr. Metall. 12, 1055 (1978).Google Scholar
12. Wasilewski, R.J., Butler, S.R., and Hanlon, J.E., J. Appl. Phys. 39, 4234(1968).CrossRefGoogle Scholar
13. Ho, K., Quader, M.A., Lin, F., and Dodd, R.A., Scr. Metall. 11, 1159 (1977).Google Scholar
14. Ommen, A.H., Phys. St. Solidi (a) 72, 273 (1982).Google Scholar
15. Seybolt, A.U. and Westbrook, J.H., Acta Metall. 12, 449 (1964).Google Scholar
16. Donaldson, A.T. and Rawlings, R.D., Acta Metall. 24, 811 (1976).CrossRefGoogle Scholar
17. Taylor, A. and Doyle, N.J., J. Appl. Crys. 5, 201 (1972).CrossRefGoogle Scholar
18. Epperson, J.E., Gerstenberg, K.W., and Berner, D., Phil. Mag. A 38, 529(1978).CrossRefGoogle Scholar
19. Yang, W.J. and Dodd, R.A., Scr. Metall. 8, 237 (1974).Google Scholar
20. Parthasarathi, A. and Fraser, H.L., Phil. Mag. A 50, 89 (1984).CrossRefGoogle Scholar
21. Hughes, T., Lautenschlager, E.P., Cohen, J.B., and Brittain, J.O., J. Appl.Phys. 42, 3705 (1971).Google Scholar