Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-12T22:22:23.276Z Has data issue: false hasContentIssue false

UV Raman Spectroscopy Study of Strain Induced by Buried Silicon Nitride Layer in the BOX of Silicon On Insulator Substrates

Published online by Cambridge University Press:  31 January 2011

Vincent Paillard
Affiliation:
[email protected], CEMES, Toulouse, France
Jesse Groenen
Affiliation:
[email protected], CEMES, Toulouse, France
Pascal Puech
Affiliation:
[email protected], CEMES, Toulouse, France
Younes Lamrani
Affiliation:
[email protected], CEA, LETI, Grenoble, France
Marek Kostrzewa
Affiliation:
[email protected], CEA, LETI, Grenoble, France
Julie Widiez
Affiliation:
[email protected], CEA, LETI, Grenoble, France
Jean-Charles Barbé
Affiliation:
[email protected], CEA, LETI, Grenoble, France
Chrystel Deguet
Affiliation:
[email protected], CEA, LETI, Grenoble, France
Laurent Clavelier
Affiliation:
[email protected], CEA, LETI, Grenoble, France
Bruno Ghyselen
Affiliation:
[email protected], SOITEC, Bernin, France
Get access

Abstract

Compressive strained Silicon from a Silicon on Insulator (SOI) substrate is obtained by replacing the buried oxide layer by a strained silicon nitride layer. The silicon overlayer and the buried dielectric are etched down to the substrate to form narrow wires (down to 300 nm wide). The Si overlayer is then expected to acquire compressive strain thanks to the relaxation of the SiN layer. The goal is to obtain a high uniaxial stress perpendicular to the wires. The structures and the strain are modeled using finite element simulations. The strain elements are used to calculate Raman spectra. Theoretical results are compared to experimental profiles deduced from resonant (UV) micro Raman experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yeo, Yee-Chia, Sun, Jisong, Ong, Eng Hong, Mat. Res. Soc. Symp. Proc. Vol. 809, B10.4.1 (2004), and refs. therein.10.1557/PROC-809-B10.4Google Scholar
2. Ghyselen, B. et al., Solid State Electronics 48, 1285 (2004).10.1016/j.sse.2004.01.011Google Scholar
3. Rayssac, O., Moriceau, H., Olivier, M., Stoemenos, I., Cartier, A. M., Aspar, B., From SOI to SOIM technology: Application for specific semiconductor processes. Proc. 10th Int. Symp. on Silicon-on-Insulator Technology and Devices, PV 2001-3, 39. Pennington, NJ: Electrochem. Soc. Proc. Series (2001).Google Scholar
4. Khan, A., Philip, J., Hess, P., J. Appl. Phys. 95, 1667 (2004) and refs. therein.10.1063/1.1638886Google Scholar
5. Yoshika, T., Ando, T., Shikida, M., Sato, K., Sensors and Actuators 82, 291 (2000).10.1016/S0924-4247(99)00364-7Google Scholar
6. Wolf, I. De, Maes, H. E., Jones, S. K., J. Appl. Phys. 79, 7148 (1996)10.1063/1.361485Google Scholar
7. Wolf, I. De, Ignat, M., Pozza, G., Maniguet, L., Maes, H. E., J. Appl. Phys. 85, 6477 (1999).10.1063/1.370151Google Scholar
8. Latu-Romain, E., Mermoux, M., Crisci, A., Delille, D., Kwakman, L. F. Tz., J. Appl. Phys. 102, 103506 (2007).10.1063/1.2811947Google Scholar