Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T23:26:40.095Z Has data issue: false hasContentIssue false

UV Laser Deposition of Thin Films at 248 NM for Phase Shifting Mask Repair

Published online by Cambridge University Press:  21 February 2011

Janos Farkas
Affiliation:
IBM Almadén Research Center, 650 Harry Road, San Jose, CA 95120
Paul B. Comita
Affiliation:
IBM Almadén Research Center, 650 Harry Road, San Jose, CA 95120
Vlad Novotny
Affiliation:
IBM Almadén Research Center, 650 Harry Road, San Jose, CA 95120
Dolores Miller
Affiliation:
IBM Almadén Research Center, 650 Harry Road, San Jose, CA 95120
Baurui yeng
Affiliation:
Quantronix Corp., 45 Adams Ave., Hauppauge, NY, 11788
Martin Cohen
Affiliation:
Quantronix Corp., 45 Adams Ave., Hauppauge, NY, 11788
Get access

Abstract

Laser-induced deposition of controlled quality silicon dioxide and thin metallic films was investigated at 248 nm for phase shifting mask (PSM) repair. SiOx (x-1.5-2) films were deposited from single precursors, such as triethoxyvinylsilane (TEVS), tetraallyloxysilane (TAOS), di-t-butoxy-diacetooxysilane (TBSA) with no oxidizing coreactant. A deposition rate of 0.25 A/pulse was possible at room temperature, with excellent optical properties (n-1.47, k-0.05). Metallic films were deposited from tungsten, gold, molybdenum and chromium compounds. The results showed that the optical transmission and phase-shifting properties of the deposits can be matched well to the films commonly used in phase shifting masks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nistier, J., Hughes, G., Muray, A., Wiley, J., SPIE Symposia Proceeding vol. 1604, 236(1991)Google Scholar
2 Levenson, M.D., Viswanathan, N.S., Simpson, R.A., IEEE Trans. Electron. Dev. ED–29, 1828 (1982)Google Scholar
3 Terasawa, T., Hasegawa, N., Tanaka, T., Katagari, S., Kurosaki, T., J. Vac. Sci. Technol. B8, 1300 (1990)Google Scholar
4 Watanabe, H., Todokoro, Y., Hirai, Y., Inoue, M., SPIE Symposia Proceeding vol. 1463, 101 (1991)Google Scholar
5 Broek, P.J., Levenson, M.D., Zavislan, J.M., Lyerla, J.R., Cheng, J.C., Podlogar, C.V., J. Vac. Sci. Technol. B9, 3155 (1991)Google Scholar
6 Terasawa, T., Hasegawa, N., Fukuda, H., Katagiri, S., Jpn. J. Appl. Phys. 30, 2991 (1991)Google Scholar
7 Lin, B.J., Solid State Technol. 35(1), 43 (1992)Google Scholar
8 Gonzales, P., Fernandez, D., Pou, J., Garcia, E., Serra, J., Leon, B., Perez-Amor, M., Thin Solid Films 218, 170 (1992)Google Scholar
9 Leon, B., Klumpp, A., Perez- Amor, M., Sigmound, H., Appl. Surf. Sci. 46, 210 (1990)Google Scholar
10 Petitjean, M., Proust, N., Chaeaublanc, J.-F., Appl. Surf. Sci. 54, 453 (1992)Google Scholar
11 Licoppe, C., Meriadec, C., Nissim, Y.I., Moison, J.M., Appl. Surf. Sci. 54, 445 (1992)Google Scholar
12 Ashokan, R., Singh, R., Gopal, V., Anandan, M., J. Appl. Phys. 73, 1943 (1993)Google Scholar
13 Klumpp, A., Sigmund, H., Appl. Surf. Sci. 36, 141 (1989)Google Scholar
14 Rieger, D., Bachmann, F., Appl. Surf. Sci. 54, 99 (1992)Google Scholar
15 Comita, P.B., Farkas, J., Novotny, V., Miller, D., Appl. Phys. Lett, in press (1994)Google Scholar
16 Farkas, J., Comita, P.B., Novotny, V., Miller, D., manuscript in preparationGoogle Scholar
17 See for example, the Proceedings of Laser Surface Processing and Characterization Symposium, 1991 E-MRS Conference, in Appl. Surf. Sci., vol 54, 1992 Google Scholar
18 Perry, L., Comita, P.B., unpublished resultsGoogle Scholar