Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T01:22:13.128Z Has data issue: false hasContentIssue false

Using Growth Kinetics for Nanoengineering of Si-Ge Surfaces

Published online by Cambridge University Press:  10 February 2011

I. Goldfarb
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OXI 3PH, England, [email protected]
G. A. D. Briggs
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OXI 3PH, England, [email protected]
Get access

Abstract

In this work we explore how various growth characteristics of Ge on Si(001) can be used to fabricate structures for potential nanodevices. In the first example, the self-assembling tendency of germanium for three-dimensional islanding on Si(001) is considered, e.g. for application in devices based on quantum dots and wires. We aimed at achieving a detailed understanding of dot nucleation and growth mechanisms from germane. By controlling the deposition parameters, such as the germane pressure and substrate temperature, arrays of dots and antidots can be created on the grown surface, and further modified by post-deposition anneals. While lower temperature deposition leads to randomly distributed dots (i.e. small and coherent three-dimensional clusters with pyramidal shapes), a higher temperature deposition results in formation of antidots (i.e. pyramidal pits), which, in turn, are gradually replaced by the clusters, if the deposition is allowed to continue. The difference is caused by the different hydrogen behaviour at the respective temperature ranges. The germanium tendency to incorporate preferentially at the step and island edges is another beneficial property, which can be used to align the dots along step edges, creating wires rather than dots, or to fabricate ultrasmall Si-Ge heterojunctions, of a less than 10 nanometer size.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bean, J.C., Fiory, A.T., Hull, R., and Lynch, R.T., in Proceedings of the 1st International Symposium on Si-MBE, edited by Bean, J.C. (Electrochemical Society, Remington, NY, 1985), Vol. 85–7, p. 161.Google Scholar
2. Houghton, D.C., Compound Semicond. 1, p. 31 (1995).Google Scholar
3. Kasper, E., Surf. Sci. 174, p.630 (1986).Google Scholar
4. Abstreiter, G., Thin Solid Films 183, p.1 (1989).Google Scholar
5. Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures, Academic Press, San-Diego, 1991.Google Scholar
6. Ogawa, T. and Takagawara, T., Phys. Rev. B 44, p.8138 (1991).Google Scholar
7. Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., and Lagally, M.G., Phys. Rev. Lett. 65, p. 1020 (1990).Google Scholar
8. Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, p.3570 (1994).Google Scholar
9. Jesson, D.E., Chen, K.M. and Pennycook, S.J., MRS Bull. 21(4), p.31 (1996).Google Scholar
10. Medeiros-Ribeiro, G., Bratkowsky, A.M., Kamins, T.I., Ohlberg, D.A.A., Williams, R.S., Science 279, p.353 (1998).Google Scholar
11. Goldfarb, I., Hayden, P.T., Owen, J.H.G. and Briggs, G.A.D., Phys. Rev. Lett. 78, p.3959 (1997).Google Scholar
12. Goldfarb, I., Hayden, P.T., Owen, J.H.G. and Briggs, G.A.D., Phys. Rev. B 56, p. 10459 (1997).Google Scholar
13. Goldfarb, I. and Briggs, G.A.D., J. Cryst. Growth (submitted).Google Scholar
14. Goldfarb, I., Owen, J.H.G., Hayden, P.T., Bowler, D.R., Miki, K., and Briggs, G.A.D., Surf. Sci.. 394, p.105 (1997).Google Scholar
15. Goldfarb, I., Owen, J.H.G., Bowler, D.R., Goringe, C.M., Hayden, P.T., Miki, K., Pettifor, D.G., and Briggs, G.A.D., J. Vac. Sci. Technol. A (in print).Google Scholar
16. Sunamura, H., Usami, N., Shiraki, Y., Fukatsu, S., Appl. Phys. Lett. 68, p.1847 (1996).Google Scholar
17. Goldfarb, I. and Briggs, G.A.D., Surf. Sci. Lett. (submitted).Google Scholar
18. Dorsch, W., Strunk, H.P., Wawra, H., Wagner, G., Groenen, J., and Caries, R., Appl. Phys. Lett. 72, p. 179 (1998)Google Scholar
19. Jesson, D.E., Chen, K.M., Pennycook, S.J., Thundat, T., Warmack, R.J., Phys. Rev. Lett. 77, p.1330 (1996).Google Scholar
20. Tomitori, M., Watanabe, K., Kobayashy, M.,Nishikawa, O., Appl. Surf. Sci. 76/77, p.322 (1994).Google Scholar