Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:26:39.310Z Has data issue: false hasContentIssue false

The Use of Thermally Decomposable Ligands for Conductive Films of Semiconductor Nanocrystals

Published online by Cambridge University Press:  01 February 2011

Andrew Wills
Affiliation:
[email protected], University of Minnesota, Chemistry, Minneapolis, Minnesota, United States
Moon Sung Kang
Affiliation:
[email protected], University of Minnesota, Chemical Engineering and Materials Science, Minneapolis, Minnesota, United States
Ankur Khare
Affiliation:
[email protected], University of Minnesota, Chemical Engineering and Materials Science, Minneapolis, Minnesota, United States
Wayne L. L. Gladfelter
Affiliation:
[email protected], University of Minnesota, Chemistry, 207 Pleasant St., SE, Minneapolis, Minnesota, 55455, United States
David Norris
Affiliation:
[email protected], University of Minnesota, Chemical Engineering and Materials Science, Minneapolis, Minnesota, United States
Get access

Abstract

Poor conductivity is a bottleneck hindering the production of nanocrystal-based devices. In most nanocrystal syntheses, ligands with long alkyl chains are used to prepare monodisperse, crystalline particles. When these nanocrystals are incorporated into devices as films, the bulky ligands form an insulating layer that prevents charge transfer between particles. While annealing or post-deposition chemical treatments can be used to strip surface ligands, each of these approaches has disadvantages. Here we demonstrate the use of a novel family of ligands comprised of primary alkyl dithiocarbamates to stabilize PbSe/CdSe core-shell nanocrystals. Primary dithiocarbamates, which can bind to cadmium and lead, are known to decompose to the corresponding sulfides when heated under mild conditions. In our scheme, PbSe/CdSe core-shell nanocrystals are first synthesized with standard ligands. These ligands are then exchanged to short chain dithiocarbamates in solution. When a film is cast and annealed at low temperature, the dithiocarbamates are removed. Electron microscopy reveals that the particles move closer together, and, along with x-ray diffraction, shows that the nanocrystals remain quantum confined. Transport measurements show a 10,000-fold increase in conductivity after annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Klimov, V. I., Semiconductor and metal nanocrystals: Synthesis and electronic and optical properties. Marcel Dekker, Inc.: New York, 2004.Google Scholar
2 Talapin, D. V.; Murray, C. B., Pbse nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310 (5745), 8689.Google Scholar
3 Luther, J. M.; Law, M.; Song, Q.; Perkins, C. L.; Beard, M. C.; Nozik, A. J., Structural, optical, and electrical properties of self-assembled films of pbse nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2008, 2 (2), 271280.Google Scholar
4 Law, M.; Luther, J. M.; Song, Q.; Hughes, B. K.; Perkins, C. L.; Nozik, A. J., Structural, optical, and electrical properties of pbse nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 2008, 130 (18), 59745985.Google Scholar
5 Yu, D.; Wehrenberg, B. L.; Jha, P. P.; Ma, J.; Guyot-Sionnest, P., Electronic transport of n-type cdse quantum dot films: Effect of film treatment. J Appl. Phys. 2006, 99 (10), 104315.Google Scholar
6 Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse cde (e = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115 (19), 87068715.Google Scholar
7 Dubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C., A versatile strategy for quantum dot ligand exchange. J. Am. Chem. Soc. 2007, 129 (3), 482483.Google Scholar
8 Hogarth, G., Transition metal dithiocarbamates 1978–2003. In Prog. Inorg. Chem., Karlin, K. D., Ed. Wiley: New York; Chichester, 2005; Vol. 53, pp 71563.Google Scholar
9 Sharma, A. K., Thermal behaviour of metal-dithiocarbamates. Thermochim. Acta 1986, 104, 339372.Google Scholar
10 Murphy, J. E.; Beard, M. C.; Nozik, A. J., Time-resolved photoconductivity of pbse nanocrystal arrays. J. Phys. Chem. B 2006, 110 (50), 2545525461.Google Scholar
11 Steckel, J. S.; Yen, B. K. H.; Oertel, D. C.; Bawendi, M. G., On the mechanism of lead chalcogenide nanocrystal formation. J. Am. Chem. Soc. 2006, 128 (40), 1303213033.Google Scholar
12 Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S., Photosensitization of zno nanowires with cdse quantum dots for photovoltaic devices. Nano Lett. 2007, 7 (6), 17931798.Google Scholar
13 Pietryga, J. M.; Werder, D. J.; Williams, D. J.; Casson, J. L.; Schaller, R. D.; Klimov, V. I.; Hollingsworth, J., Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 2008, 130 (14), 48794885.Google Scholar