Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:36:03.308Z Has data issue: false hasContentIssue false

Use of Saccharides as Solid-state Precursors for the Synthesis of Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Gokce Kucukayan
Affiliation:
[email protected], Bilkent University, Institute of Materials Science and Nanotechnology, Ankara, N/A, Turkey
Serim Kayacan
Affiliation:
[email protected], Bilkent University, Institute of Materials Science and Nanotechnology, Ankara, N/A, Turkey
Beril Baykal
Affiliation:
[email protected], Bilkent University, Chemistry, Department of Chemistry, Ankara, N/A, Turkey
Erman Bengu
Affiliation:
[email protected], Bilkent University, Chemistry, Department of Chemistry, Ankara, N/A, Turkey
Get access

Abstract

Saccharides, ranging from simple table sugar (sucrose) to lactulose were successfully used as solid-state precursors for the synthesis of multi-walled carbon nanotubes (MWCNT). Dehydrated saccharide residues mixed with catalyst powders were subjected to pyrolysis at high temperatures (up to 1300°C) under flowing Argon atmosphere. Pyrolysis products were investigated using TEM, SEM, Raman spectroscopy and EDS. Images taken using the S/TEM and bright field mode of TEM showed the presence of helical multi-walled carbon nanotube (H-MWCNT) and regular MWCNT formation. More than two or three catalyst particles were observed to be present inside the hollow core of some of the nanotubes synthesized, suggesting a high level of capillary activity inside the tubes during synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Wang, Y.Y., Tang, G.Y., Koeck, F.A.M., Brown, B., Garguilo, J.M., and Nemanich, R.J., Diamond and Related Materials 13, 1287 (2004).Google Scholar
3. Ajayan, P.M., Schadler, L.S., Giannaris, C., and Rubio, A., Adv. Mater. 12, 750 (2000).Google Scholar
4. Bethune, D. S., Klang, C. H., deVries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605 (1993).Google Scholar
5. Scott, C. D., Arepalli, S., Nikolaev, P., and Smalley, R. E., Appl. Phys. A 72, 573 (2001).Google Scholar
6. Peigney, A., Coquay, P., Flahaut, E., R. Vandenberghe, E., Grave, E. De, and Laurent, C., J. Phys. Chem. B 105, 9699 (2001).Google Scholar
7. Lin, C.H., Lee, S.H., Hsu, C.M., and Kuo, C.T., Diamond and Related Materials 13, 2147 (2004).Google Scholar
8. Awasthi, K., Srivastava, A., and Srivastava, O., J. Nanosci. Nanotech. 5, 1616 (2005).Google Scholar
9. Demoncy, N., Stephan, O., Brun, N., Colliex, C., Loiseau, A., and Pascard, H., Eur. Phys. J. B 4, 147 (1998).Google Scholar
10. Mohlala, M. S., Liu, X.Y., Witcomb, M.J., and Coville, N.J., Appl. Organometal. Chem. 21, 275 (2007).Google Scholar
11. Katsuki, H., Matsunaga, K., Egashira, M., and Kawasumi, S., Carbon 19, 148 (1981).Google Scholar
12. Rodriguez, N. M., Kim, M. S., Fortin, F., Mochida, I. and Baker, R. T. K., Appl. Catal. A 148, 265 (1997).Google Scholar
13. Kiang, C. H., Dresselhaus, M. S., Beyers, R., and Bethune, D. S., Chem. Phys. Lett. 259, 41 (1996).Google Scholar
14. Huang, Q. and Gao, L., Nanotechnology 15, 1855 (2004).Google Scholar
15. Zhou, Z., Ci, L., Chen, X., Tang, D., Yan, X., Liu, D., Liang, Y. Yuan, H., Zhou, W., Wang, G., and Xie, S., Carbon 41, 337 (2003).Google Scholar
16. Hussain, A., Nanotechnology 4, 925 (2003).Google Scholar
17. Valles, C., Perez-Mendoza, M., Castell, P., Martinez, M. T., and Maser, W. K., Nanotechnology 17, 4292 (2006).Google Scholar
18. Wei, J., Zhu, H., Jia, Y., Shu, Q., Li, C., Wang, K., Wei, B., Zhu, Y., Wang, Z., Luo, J., Liu, W., and Wu, D., Carbon 45, 2152 (2007).Google Scholar
19. Wei, J., Jiang, B., Wu, D., and Wei, B., J. Phys. Chem. B 108, 8844 (2004).Google Scholar
20. Yu, J. S., Yoon, S. B. and Chai, G. S., Carbon 39, 1421 (2001).Google Scholar