Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T03:20:41.049Z Has data issue: false hasContentIssue false

Use of Neutron Diffraction in Determining Strains in High-Temperature Superconducting Composites*

Published online by Cambridge University Press:  21 February 2011

D. S. Kupperman
Affiliation:
Materials and Components Technology Division, R. L. Hitterman, Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
J. P. Singh
Affiliation:
Materials and Components Technology Division, R. L. Hitterman, Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
S. Majumdar
Affiliation:
Materials and Components Technology Division, R. L. Hitterman, Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
J. Faber Jr.
Affiliation:
Amoco Research, Naperville, Illinois
Get access

Abstract

The Argonne Intense Pulsed Neutron Source and General Purpose Powder Diffractometer have been used to study high Tc metal oxide composites composed of yttrium barium copper oxide and silver. Neutron diffraction techniques were applied to composites with 15, 20 and 30% silver content by volume. We have observed that after hot pressing, the 30% Ag specimens contained both orthorhombic high Tc and tetragonal, non-superconducting phases near the center of the specimens but only tetragonal near the surface. The relationship of shifts in Bragg peaks to strains of the constituents is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U.S. Department of Energy, Office of Energy Storage and Distribution, Conservation and Renewable Energy, under Contract W-109-31-Eng-38. This work has benefited from the use of the Intense Pulsed Neutron Source at Argonne National Laboratory.

References

REFERENCES

1. Bednorz, J. G. and Muller, K. A., Z. Phys. B64, 189 (1986).Google Scholar
2. Liang, J. M., Liu, R. S., Chang, L., Wu, P. T., and Chen, L. J., Appl. Phys. Lett. 53, 1434 (1988).Google Scholar
3. Kohno, O., Ikeno, Y., Sadakata, N., and Goto, K., Jpn. J. Appl. Phys. 27, L77 (1988).Google Scholar
4. Singh, J. P., Leu, H. J., Voorhees, E. Van, Gondey, G. T., Winsley, K. and Shi, D., unpublished information.Google Scholar
5. Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Dover, R. B. Van, Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
6. Majumdar, S., Kupperman, D., and Singh, J., J. Am. Ceram. Soc. 71(10), 858 (1988)CrossRefGoogle Scholar
7. Allen, A. J., Hutchings, M. T. and Windsor, C. G., Advances in Physics, 34(4) 445 (1985).Google Scholar
8. Kupperman, D. S., Singh, J. P., Faber, J. Jr., and Hitterman, R. L., J. Appl. Phys., 66(7), 3396 (1989)CrossRefGoogle Scholar
9. Selsing, J., J. Amer. Ceram. Soc. 44, 419 (1961).Google Scholar
10. Jorgensen, J. D. (private communication).Google Scholar
11. Shaked, H. (private communication).Google Scholar
12. Stumberg, A. W. von, Chen, Nan, Goretta, K. C. and Routbort, J., J. Appl Phys. 66 (5), 2079 (1989).Google Scholar