Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T04:44:52.640Z Has data issue: false hasContentIssue false

The use of multinuclear solid state NMR for the characterization of siloxane-oxide hybrid nanocomposites

Published online by Cambridge University Press:  01 February 2011

Christel Gervais
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
Beatriz Julián
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France Departamento de Química Inorgánica y Orgánica, Campus de Riu Sec, Universitat Jaume I, 12071, Castellón, Spain
Eloisa Cordoncillo
Affiliation:
Departamento de Química Inorgánica y Orgánica, Campus de Riu Sec, Universitat Jaume I, 12071, Castellón, Spain
Purificación Escribano
Affiliation:
Departamento de Química Inorgánica y Orgánica, Campus de Riu Sec, Universitat Jaume I, 12071, Castellón, Spain
Mark E. Smith
Affiliation:
Department of Physics, University of Warwick, Coventry, CV4 7AL, U.K
Florence Babonneau
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
Clément Sanchez
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

The objective of this paper is to review various solid state NMR techniques that have been, or can be used for the structural characterization of siloxane—oxide hybrid systems prepared by sol-gel process, and to discuss the type of information they provide, as well as their limitations. More precisely, this paper focuses on NMR techniques to probe and quantify the different types of oxo-bridges (M–O–M of oxide network, Si–O–Si of siloxane chains and Si–O–M siloxane–MxOy interface) in siloxane-oxide nanocomposites prepared through hydrolysis and condensation of organosilanes and M(OR)n alkoxides. In addition the influence of the functionality of the silicon alkoxides and the nature of the MxOy oxides on the extent of the Si-O-M interface will be examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sanchez, C., Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar
2. Julián, B., Gervais, C., Cordoncillo, E., Escribano, P., Babonneau, F., Sanchez, C., Chem. Mater. 15, 3026 (2003).Google Scholar
3. Harris, R. K., Robbins, M. L., Polymer 19, 1123 (1978).Google Scholar
4. Babonneau, F., Polyhedron 13, 1123 (1994).Google Scholar
5. Babonneau, F., Bois, L., Livage, J., Diré, S., Mat. Res. Soc. Symp. Proc. 286, 239 (1993).Google Scholar
6. Babonneau, F., Mat. Res. Soc. Symp. Proc. 346, 949 (1994).Google Scholar
7. Babonneau, F., New J. Chem. 18, 1065 (1994).Google Scholar
8. Walter, T.M., Turner, G.L., Oldfield, E., J. Magn. Reson. 76, 106 (1988).Google Scholar
9. Bastow, T.J., Moodie, A.F., Smith, M.E., Whitfield, H.J., J. Mater. Chem. 3, 697 (1993).Google Scholar
10. Blanchard, J., Bonhomme, C., Maquet, J., Sanchez, C., J. Mater. Chem 8, 975 (1998).Google Scholar
11. Guermeur, C., Lambard, J., Gerard, J.-F., Sanchez, C., J. Mater. Chem. 9, 769 (1999).Google Scholar
12. Pickup, D. M., Mountjoy, G., Holland, M. A., Wallidge, G. W., Newport, R. J., Smith, M. E.,. J. Mater. Chem. 10, 1887 (2000).Google Scholar
13. Filowitz, M., Ho, R. K. C., Klemperer, W. G., Shum, W., Inorg. Chem. 18, 93 (1979).Google Scholar
14. Hussin, R., Dupree, R., Holland, D., J. Non-Cryst. Solids 246, 159 (1999).Google Scholar
15. Pozarnsky, G. A., McCormick, A. V., J. Mater. Chem. 1749, 4 (1994).Google Scholar
16. Dirken, P.J., Kohn, S.C., Smith, M.E., van Eck, E.R.H., Chem. Phys. Lett. 266, 568 (1997).Google Scholar
17. Wang, S., Stebbins, J., J. Am. Ceram. Soc. 82, 1519 (1999).Google Scholar
18. Dirken, P.J., Smith, M.E., Whitfield, H.J., J. Phys. Chem. 99, 395 (1995).Google Scholar
19. Smith, M.E., Whitfield, H.J., J. Chem. Soc., Chem. Commun. 723 (1994).Google Scholar
20. Pickup, D.M., Mountjoy, G., Wallidge, G.W., Anderson, R., Cole, J.M., Newport, R.J., Smith, M.E., J. Mater. Chem. 9, 1299 (1999).Google Scholar
21. Gervais, C., Babonneau, F., Hoebbel, D., Smith, M.E., Solid State NMR 17, 2 (2000).Google Scholar
22. Alonso, B., Sanchez, C., J. Mater. Chem. 10, 377 (2000).Google Scholar
23. Babonneau, F., Maquet, J., Polyhedron 19, 315 (2000).Google Scholar
24. Lafuma, A., Fayon, F., Massiot, D., Chodorowski-Kimmès, S., Sanchez, C., Magn. Res. Chem. 41, 944 (2003)Google Scholar
25. Julian, B., Gervais, C., Rager, M.-N., Maquet, J., Cordoncillo, E., Escribano, P., Babonneau, F., Sanchez, C., Chem. Mater. 16, 521 (2004).Google Scholar
26. Babonneau, F., Maquet, J., Polyhedron 19, 315 (2000).Google Scholar
27. Gervais, C., Babonneau, F., Smith, M.E., J. Phys. Chem. B 105, 1971 (2001).Google Scholar
28. Kundla, E., Samoson, A., Lippmaa, E., Chem. Phys. Lett. 83, 229 (1981).Google Scholar
29. Smith, M.E., van Eck, E.R.H., Progress in NMR Spectroscopy 34, 159 (1999).Google Scholar
30. Hussin, R., Dupree, R., Holland, D., J. Non-Cryst. Solids 246, 159 (1999).Google Scholar
31. Tossell, J.A., Am. Mineral. 78, 911 (1993).Google Scholar
32. Medek, A., Harwood, J.S., Frydman, L., J. Am. Chem. Soc. 117, 12779 (1995).Google Scholar
33. Babonneau, F., Maquet, J., Livage, J., Chem. Mater. 7, 1050 (1995).Google Scholar
34. Diré, S., Babonneau, F., Carturan, G., Livage, J., J. Non-Cryst. Solids 121, 428 (1990).Google Scholar
35. Peeters, M.P.J., Kentgens, A.P.M., Solid State NMR 9, 203217 (1997).Google Scholar
36. Soraru, G.D., Dallabona, N., Gervais, C., Babonneau, F., Chem. Mater. 11, 910 (1999).Google Scholar
37. Bastow, T. J., Gibson, M. A., Forwood, C. T.,. Solid State NMR 12, 201 (1998).Google Scholar
38. Labouriau, A., Earl, W. L., Chem. Phys. Lett. 270, 278 (1997).Google Scholar
39. Kanert, O., Kalem, H., J. Phys. C 21, 3909 (1998).Google Scholar
40. Dec, S. F., Davis, M. F., Maciel, G. E., Bronnimann, C. E., Fitzgerald, J. J., Han, S. S., Inorg. Chem. 32, 955 (1993).Google Scholar
41. Padro, D., Howes, A. P., Smith, M. E., Dupree, R., Solid State NMR 15, 231 (2000).Google Scholar
42. Sommer, R., Maglione, M., Van Der Klink, J. J., Ferroelectrics 117, 483 (1990).Google Scholar
43. Bastow, T. J., Whitfield, H. J., Solid State Communications 117, 483 (2001).Google Scholar
44. Zalar, B., Laguta, V., Blinc, R., Phys. Rev. Lett. 90, 037601 (2003).Google Scholar
45. Gervais, C., Veautier, D., Smith, M. E., Babonneau, F., Belleville, P., Sanchez, C., Solid State NMR 26 147 (2004).Google Scholar
46. Gervais, C., Smith, M.E., Pottier, A., Jolivet, J.-P., and Babonneau, F.. Chem. Mater. 13, 462 (2001).Google Scholar
47. Ganapathy, S., Gore, K.U., Kumar, R., Amoureux, J.-P., Solid State NMR 24 184 (2003).Google Scholar
48. Bastow, T. J., Gibson, M. A., Forwood, C. T., Solid State NMR 12, 201 (1998).Google Scholar
49. Hoebbel, D., Nacken, M., Schmidt, H., Huch, V., and Veith, M., J. Mater. Chem. 8, 171 (1998).Google Scholar
50. Padro, D., Jennings, V., Smith, M.E., Hoppe, R., Thomas, P.A. and Dupree, R., J. Phys. Chem. B, 106, 13176 (2002).Google Scholar