Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T10:39:33.856Z Has data issue: false hasContentIssue false

Use of Metastable Phase Diagrams in Rapid Solidification

Published online by Cambridge University Press:  15 February 2011

J. H. Perepezko
Affiliation:
Department of Metallurgical and Mineral Engineering, University of Wisconsin, Madison, WI 53706
W. J. Boettinger
Affiliation:
Metallurgy Division, National Bureau of Standards, Washington, DC 20234
Get access

Abstract

During rapid solidification, the nucleation and/or growth of a thermodynamically stable phase may be difficult. In this case the liquidus, solidus or other thermodynamic data for a metastable phase are important for the interpretation and prediction of the phases present in rapidly solidified materials. In this paper various techniques are described to obtain information about metastable equilibrium from measured stable equilibrium data. Extrapolations of phase boundaries as functions of temperature, pressure or composition (including a new component) into regions of metastability can often be constructed directly on the equilibrium diagram. These constructions can be performed more quantitatively with analytical methods using thermodynamic modelling of the free energy functions consistent with measured data. A number of examples are considered including a discussion of metastable liquid miscibility gaps, metastable eutectic and peritectic reactions, pressure diagrams and metastability in ternary alloys to indicate the possible product phase selection. A coupling of metastable phase diagrams with a solidification kinetics analysis can contribute towards effective alloy design and processing during rapid solidification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Flemings, M. C., Solidification Processing (McGraw-Hill, New York, 1974).CrossRefGoogle Scholar
2. Turnbull, D., J. Chem. Phys., 20 411 (1952);CrossRefGoogle Scholar
2a Contemp. Phys., 10 473 (1969).CrossRefGoogle Scholar
3. Christian, J. W., The Theory of Transformations in Metals and Alloys, (Pergamon Press, Oxford, 1965).Google Scholar
4. Bosio, L., Defrain, A. and Epelboin, I., J. de Phys. 27, 61 (1966).CrossRefGoogle Scholar
5. Perepezko, J. H., in Rapid Solidification Processing: Principles and Technologies II, Mehrabian, R., Kear, B. H. and Cohen, M., eds. (Claitor's Pub., Baton Rouge, LA, 1980) 56.Google Scholar
6. Perepezko, J. H. and Anderson, I. E., in Synthesis and Properties of Metastable Phases, Machlin, E. S. and Rowland, T. J., eds. (TMS-AIME, Warrendale, PA 1980), 31.Google Scholar
7. Cahn, J. W., Hillig, W. B. and Sears, G. W., Acta Met. 12 1421 (1964).Google Scholar
8. Kurz, W. and Fisher, D., Int. Met. Rev. 56 177 (1979).Google Scholar
9. Adam, C. M. and Hogan, L. M., J. Australian Inst. of Metals 17 81 (1972).Google Scholar
10. Hughes, I. R. and Jones, H., J. Mat. Sci. 11 1781 (1976).Google Scholar
11. Baker, J. C. and Cahn, J. W., in Solidification (ASM, Metals Park, Ohio 1971), pp. 2358.Google Scholar
12. Cohen, M., Kear, B. H. and Mehrabian, R., in Rapid Solidification Processing: Principles and Technologies II, Behrabian, R., Kear, B. H. and Cohen, M., eds. (Claitor's Pub., Baton Rouge, LA 1980), pp. 123.Google Scholar
13. Pieraggi, B. and Dabosi, F., J. Mat. Sci. 14, 416 (1979).Google Scholar
14. Hillert, M., in Solidification and Casting of Metals (The Metals Society, London 1979), p. 81 and 157.Google Scholar
15. Hultgren, R., Desai, P. D., Hawkins, D. T., Glesier, M., Kelley, K. K. and Wagman, D. D., Selected Values of Thermodynamic Properties of the Elements (ASM, Metals Park, Ohio 1973).Google Scholar
16. Hansen, M. and Anderko, K., Constitution of Binary Alloys (McGraw-Hill, New York, 1958).Google Scholar
17. Metals Handbook, 8th Edition, 8 (ASM, Metals Park, Ohio 1973).Google Scholar
18. Cech, R. E., J. Metals 206, 585 (1956).Google Scholar
19. Srivastava, P. K., Giessen, B. C. and Grant, N. J., Acta Met. 16 1199 (1968).Google Scholar
20. Boettinger, W. J., Met. Trans. 5, 2023 (1974).Google Scholar
21. Brody, H. D. and David, S. A., in Solidification and Casting of Metals (The Metals Society, London 1979), p. 144.Google Scholar
22. Kaufman, L. and Bernstein, H., Computer Calculations of Phase Diagrams (Academic Press, New York, 1970).Google Scholar
23. Cahn, J. W., Trans. TMS-AIME 242 168 (1968).Google Scholar
24. Polk, D. E. and Giessen, B. C., in Metallic Glasses (ACM, Metals Park, Ohio 1978), pp. 135.Google Scholar
25. For example, Goodman, D. A., Cahn, J. W. and Bennett, L. H., Bull. Alloy Phase Diag. 2, 29 (1981).CrossRefGoogle Scholar
26. Darken, L. S. and Gurry, R. W., Physical Chemistry of Metals, (McGraw-Hill, New York 1953).Google Scholar
27. Boettinger, W. J. and Perepezko, J. H., unpublished work.Google Scholar
28. Nakagawa, Y., Acta Met. 6, 704 (1958).Google Scholar
29. Verhoeven, J. D. and Gibson, E. D., J. Mat. Sci. 13, 1576 (1978).CrossRefGoogle Scholar
30. Spaepen, F. and Turnbull, D., in Metallic Glasses (ASM, Metals Park, Ohio 1978), pp. 114127.Google Scholar
31. Phillips, H.W.L., Annotated Equilibrium Diagrams of Some Aluminum Alloy Systems (The Institute of Metals, London, 1959).Google Scholar
32. Richmond, J. J., Perepezko, J. H., LeBeau, S. E. and Cooper, K. P., in Rapid Solidification Processing: Principles and Technologies III, NBS (in press).Google Scholar
33. Simensen, C. J. and Vellesamy, R., Z. Metallkde. 68 428 (1977).Google Scholar
34. Tonejc, A., Rocak, D. and Bouefacic, A., Acta Met. 19 311 (1971).Google Scholar
35. Duzevic, D., Scripta Met. 9, 543 (1975).CrossRefGoogle Scholar
36. Morris, L. R., in Solidification and Casting of Metals (The Metals Society, London 1979), 218.Google Scholar
37. Kaufman, L., in Solids Under Pressure, Paul, M. and Warschauer, D. M., eds. (McGraw-Hill, New York 1963), 304.Google Scholar
38. Klement, W., Jayaraman, A. and Kennedy, G. C., Phys. Rev. 131 632 (1963).CrossRefGoogle Scholar
39. LaCourt, D., Paik, J. S. and Perepezko, J. H., to be published.Google Scholar
40. Bosio, L., Defrain, A. and Dupont, M., J. Chim. Phys. 68 542 (1971).CrossRefGoogle Scholar
41. Akhtar, D., Vankar, V. D., Goel, T. C. and Chopra, K. L., J. Mat. Sci. 14 2422 (1979).CrossRefGoogle Scholar
42. Ponyatovskiy, Ye. G. and Rabinkin, A. G., Fiz. Metal. Metalloved. 30 606 (1970).Google Scholar
43. Clark, J. B. and Pistorius, C.W.F.T., J. Less Common Metals, 42 59 (1975).Google Scholar
44. Richter, P. W., Rapoport, E. and Clark, J. B., J. Less Common Metals, 60 195 (1978).Google Scholar
45. Boettinger, W. J., in Rapidly Solidified Amorphous and Crystalline Alloys, Kear, B. H., Giessen, B. C. and Cohen, M., eds. (Elsevier, New York 1982), 15.Google Scholar
46. Cahn, J. W., Coriell, S. R. and Boettinger, W. J., in Laser and Electron Beam Processing of Materials, White, C. W. and Peercy, P. S., eds. (Academic Press, New York 1980), 89.Google Scholar
47. Boettinger, W. J., in Proc. of Fourth Int. Conf. on Rapidly Quenched Metals, T. Masumoto and K. Suzuki, eds. (Jap. Inst. Metals, Sendai 1982), 99.Google Scholar
48. Massalski, T. B., these proceedings.Google Scholar
49. Duwez, P., Willens, R. H. and Klement, W., J. Appl. Phys. 31, 1136, 1500 (1960).Google Scholar
50. Boswell, P. G. and Chadwick, G. A., J. Mat. Sci. 12, 1979 (1977).Google Scholar
51. Hillert, M., in Conference on In-Situ Composites-III (Ginn Custom Pub., Lexington, MA 1979), 48Google Scholar
52. Cahn, J. W., private communication.Google Scholar