Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:31:33.581Z Has data issue: false hasContentIssue false

The Use of Laboratory Adsorption Data and Models to Predict Radionuclide Releases from a Geological Repository: a Brief History

Published online by Cambridge University Press:  03 September 2012

Donald Langmuir*
Affiliation:
U.S. Nuclear Waste Technical Review Board 1100 Wilson Boulevard, Suite 910, Arlington, VA 22209
Get access

Abstract

Radionuclide (RN) adsorption has long been recognized as important to assure the isolation of nuclear wastes in a geological repository [1]. Laboratory measured RN adsorption data have generally been expressed as distribution coefficient (Kd) values or adsorption isotherms. The proper application of these models is to site conditions nearly identical to those used in the laboratory adsorption experiments. This has required that multiple Kd's and isotherms be determined in a wide range of experiments designed to bracket expected repository conditions.

The surface complexation (SC) adsorption models were introduced in the late 1970's. The best known of these models incorporate electrical double layer (EDL) theory [2]. Their use requires that the water chemistry and surface properties of adsorbing rocks and minerals be fully characterized. Adsorption is then studied as reactions involving specific aqueous RN species (often complexes) and specific surface sites. Because the SC models are relatively mechanistic, they may allow extrapolation of adsorption results to repository conditions that lie outside the limited experimental range used to parameterize a given model. Turner [3] has shown that the diffuse layer model (the simplest SC model) fits a wide range of RN adsorption data as well as the more complex models. Others have suggested ways to generalize and estimate SC model parameters for a variety of minerals, rocks and engineered materials (cf. [4,5,6,7,8,9,10,11,12]. Degueldre and Werlni [12] and Degueldre et al. [13] have proposed a simplified SC model for RN adsorption that avoids EDL theory, in which the adsorption of RN species is estimated from linear free energy relationships.

It is appropriate to ask how accurately RN adsorption behavior must be known or understood for total system performance analysis (TSPA). In most geological settings now being considered for repository development globally, it may suffice to select bounding Kd values for the different rock types (cf. [14,15]). Use of the SC models to describe RN adsorption can provide us with increased confidence that minimum Kd's and the distribution of Kd values we might propose for TSPA are in fact conservative.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ames, L.L. and Rai, D., Radionuclide Interactions with Soil and Rock Media, Vol. 1, Report EPA 520/6–78–007, Battelle Pacific Northwest Laboratories, Richland, WA.Google Scholar
2. Davis, J.A., James, R.O., Leckie, J.O., J. Colloid Interface Sci. 63, 480 (1978).Google Scholar
3. Turner, D.R., A Uniform Approach to Surface Complexation Modeling of Radionuclide Sorption, Report CNWRA 95–001 (Center for Nuclear Waste Regulatory Analysis, San Antonio, TX, 1995).Google Scholar
4. Bradbury, M.H., Baeyens, B., J. Colloid Interface Sci. 158, 364 (1993).Google Scholar
5. Sverjensky, D.A., Nature 364, 776 (1993).Google Scholar
6. Sverjensky, D.A., Geochim. Cosmochim. Acta 58 (14), 3123 (1994).Google Scholar
7. Baston, G.M.N., Berry, J.A., Brownsword, M., Heath, T.G., Tweed, C.J., Williams, S.J., in Scientific Basis for Nuclear Waste Management XVIII, eds. Murakami, T. & Ewing, R.C. (Mat. Res. Soc. Symp. Proc. 353, Pittsburgh, PA 1995), p. 957.Google Scholar
8. Baston, G.M.N., Berry, J.A., Brownsword, M., Cowper, M.M., Heath, T.G., Tweed, C.J., in Scientific Basis for Nuclear Waste Management XVIII, eds. Murakami, T. & Ewing, R.C. (Mat. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995), p. 989.Google Scholar
9. Fujita, T., Tsukamoto, M., Ohe, T., Nakayama, S., Sakamoto, Y., in Scientific Basis for Nuclear Waste Management XVIII, eds. Murakami, T. & Ewing, R. C. (Mat. Res. Soc. Symp. Proc. 353, Pittsburgh, PA 1995), p. 965.Google Scholar
10. Sverjensky, D.A., Sahai, N., Geochim. Cosmochim. Acta 60 (20), 3773, (1996).Google Scholar
11. Langmuir, D., Aqueous Environmental Geochemistry, (Prentice-Hall, Upper Saddle River, NJ, 1997).Google Scholar
12. Degueldre, C., Wernli, B., J. Envir. Radioactivity 20, 151 (1993).Google Scholar
13. Degueldre, C., Ulrich, H.J., Silby, H., Radiochimica Acta 65, 173 (1994).Google Scholar
14. Meijer, A., in Proc. DOE/Yucca Mountain Site Characterization Project Radionuclide Adsorption, Rept. LA-12325-C (Workshop, Los Alamos Natl. Lab, Los Alamos, NM, 1992), p. 9.Google Scholar
15. OECD, The Status of Near-Field Modeling. Proc. Technical Workshop, Cadarache, France (Organisation for Econ. Cooperation & Devel., Paris, 1993).Google Scholar
16. McKinley, I.G., Alexander, W.R., J. Contaminant Hydrol. 13, 249 (1993).Google Scholar
17. Triay, I., Cotter, C.R., Kraus, S.M., Huddieston, M.H., Chipera, S.J., Bish, D.L., Radionuclide Sorption in Yucca Mountain Tuffs with J-13 Well Water: Neptunium, Uranium and Plutonium. Report LA-12956-MS (Los Alamos National Laboratory, Los Alamos, NM, 1996)Google Scholar
18. Hsi, C-K., Langmuir, D., Geochim. Cosmochim. Acta 49 (9), 1931 (1985).Google Scholar
19. Taylor, M.J., Practical Study Requirements Groundwater and Seepage Uranium Mill Waste Disposal Systems. Written testimony for Royal Commission of Inquiry Health and Envir. Protection, Vancouver, BC, (1979).Google Scholar
20. James, R.O., Healy, T.W., J. Colloid Interface Sci. 40 (1), 65 (1972).Google Scholar
21. Westall, J., Hohl, H., Adv. Colloid Interface Sci. 12 (4), 265 (1980).Google Scholar
22. Davis, J.A., Kent, D.B., in Mineral-Water Interface Geochemistry, eds. Hochella, M.F. and White, A.F.. Reviews in Mineralogy 23 (Min. Soc. Am.) p. 177.Google Scholar
23. Allison, J.D., Brown, D.S., Novo-Gradac, K.J.. MINTEQA2, A Geochemical Assessment Data Base and Test Cases for Environmental Systems. Version 3.0, Users Manual. Report EPA/600/3–91/-21 (U.S. Envir. Protection Agency, Athens, GA, 1991).Google Scholar
24. Papelis, C., Hayes, K.F., Leckie, J.O., HYDRAQL: A Program for the Computation of Chemical Equilibrium Composition of Aqueous Batch Systems Including Surface-Complexation Modeling of Ion Adsorption at the Oxide/Solution Interface, Tech. Rept. 306 (Dept. of Civil Eng., Stanford Univ., 1988).Google Scholar
25. Parkhurst, D.L., Users Guide to PHREEQC-A Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations. U.S. Geol. Survey Water Resources Inv. Rept. 95–4227 (1995).Google Scholar
26. Dzombak, D.A., Morel, F.M.M., Surface Complexation Modeling. Hydrous Ferric Oxide (Wiley-Interscience, New York, 1990).Google Scholar
27. James, R.O., Parks, G.A., Surface Colloid Sci. 12, 119 (1982).Google Scholar
28. Dzombak, D.A., Morel, F.M.M., J. Hydraulic Eng. 113, 430 (1987).Google Scholar
29. Stumm, W., editor, Aquatic Surface Chemistry. Chemical Processes at the Particle-Water Interface (John Wiley & Sons, New York, NY, 1987).Google Scholar
30. Stumm, W., Chemistry of the Solid-Water Interface (Wiley-Interscience, New York, NY, 1992).Google Scholar
31. Westall, J.C. in Scientific Basis for Nuclear Waste Management XVIII, eds. Murakami, T. and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995), p. 937.Google Scholar
32. Turner, D.R., Sorption Modeling for High-Level Waste Performance Assessment: A Literature Review. Rept. CNWRA 91–011 (Center for Nuclear Waste Regulatory Anal., San Antonio, TX, 1991).Google Scholar
33. Turner, D.R., Mechanistic Approaches to Radionuclide Sorption Modeling. Rept. CNWRA-93–019 (Center for Nuclear Waste Regulatory Anal., San Antonio, TX, 1993).Google Scholar
34. Turner, D.R., A Uniform Approach to Surface Complexation Modeling of Radionuclide Sorption. Rept. CNWRA 95–001 (Center for Nuclear Waste Regulatory Anal., San Antonio, TX, 1995).Google Scholar
35. Schindler, P.W., Stumm, W., in Aquatic Surface Chemistry, editor Stumm, W. (Wiley-Interscience, New York, NY, 1987), p. 83.Google Scholar
36. Balistrieri, L., Brewer, P.G., Murray, J.W., Deep-Sea Research 28A, 101 (1981).Google Scholar
37. Smith, R.M., Jenne, E.A., Compilation, Evaluation and Prediction of Triple-Layer Model Constants for Ions on Fe(III) and Mn(IV) Hydrous Oxides. Rept. PNb6754 (Battelle Pacific Northwest Laboratory, Richland, WA, 1988)Google Scholar
38. Fujita, T., Tsukamoto, M., Ohe, T., Nakayama, S., Sakamoto, Y., in Scientific Basis for Nuclear Waste Management XVIII, eds. Murakami, T. & Ewing, R. C. (Mat. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995), p. 965.Google Scholar
39. Degueldre, C., J. Envir. Radioactivity 29 (1), 75 (1995).Google Scholar
40. Degueldre, C., J. Envir. Radioactivity 34 (2), 211 (1997).Google Scholar
41. Silva, R.J., Nitsche, H., Radiochim. Acta (in press) (1996).Google Scholar
42. Puigdomenech, I., Bergstrom, U., Nuclear Safety 36 (1), 142 (1995).Google Scholar
43. Siegel, M.D., Tripathi, V.S., Rao, M.G., Ward, D.B., in Proc. 7th Intl. Water-Rock Interaction, eds. Kharaka, Y.K. and Maest, A.S. (A.A. Balkema, Rotterdam, 1992) p. 63.Google Scholar
44. Riese, A.C., Adsorption of Radium and Thorium onto Quartz and Kaolinite: A Comparison of Solution/Surface Equilibria Models PhD thesis T-2625 (Colorado School of Mines, Golden, CO, 1982).Google Scholar
45. Vochten, R.F., Van Haverbeke, L., Goovaerts, F., J. Chem. Soc. Farad. Trans. 86 (4), 4095. (1990).Google Scholar
46. Pabalan, R.T., Prikryl, P.M., Dietrich, T.B., in Scientific Basis for Nuclear Waste Management XVI. eds Interrante, C. and Pabalan, R. (Mater. Res. Soc. Symp. Proc. 294, Pittsburgh, PA, 1993) p. 777.Google Scholar
47. Nakayama, S., Sakamoto, Y., Radiochim. Acta 52/ 53, 153 (1991).Google Scholar
48. Kohler, M., Wieland, E., Leckie, J.O., in Proc. 7th Intl Symp. on Water-Rock Interaction, vol. 1: Low Temperature Environments, eds. Kharaka, Y.K. and Maest, A.S. (A.A. Balkema, Rotterdam, 1992), p. 51.Google Scholar
49. Payne, T.E., Sekine, K., Davis, J.A., Waite, T. D. in Alligtor Rivers Analogue Project Annual Rept. 1990–1991. ed. Duerden, P. (Australian Nuclear Sci. & Technol. Org., 1992), p. 57.Google Scholar
50. Allard, B., Sorption of Actinides in Granite Rock, Rept. KBS 82–21 (Dept. of Nuclear Chem., Chalmers Univ. of Technol., Goteborg, Sweden, 1992) p. 61.Google Scholar
51. Heath, T.G., Ilett, D.J., Tweed, C.J., in Scientific Basis f or Nuclear Waste Management XIX. eds. Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996) p. 443.Google Scholar
52. Turner, G.D., Zachara, J.M., McKinley, J.P., Smith, S.C., Geochim. Cosmochim. Acta 60 (18), 3399 (1996).Google Scholar
53. McKinley, J.P., Zachara, J.M., Smith, S.C., Turner, G.D., Clays & Clay Minerals 43, 586 (1995).Google Scholar
54. Freeze, R.A., Cherry, J.A., Groundwater (Prentice-Hall, Englewood Cliffs, NJ, 1979).Google Scholar
55. Girvin, D.C., Ames, L.L., Schwab, A.P., McGarrah, J.E., J. Colloid Interface Sci. 141 (1), 67 (1991).Google Scholar
56. Murphy, W.M., Pabalan, R.T., Prikryl, J.D., Goulet, C.J., Am. J. Sci. 296, 128 (1996).Google Scholar
57. Triay, L.R., Cotter, C.R., Huddleston, M.H., Leonard, D.E., Weaver, S.C., Chipera, S.J., Bish, D.L., Meijer, A., Canepa, J.A., Batch Sorption Results for Neptunium Transport through Yucca Mountain Tuffs. Rept. LA-12961-MS (Los Alamos Nati. Laboratory, Los Alamos, NM).Google Scholar
58. Jenne, E.A., in Metal Speciation and Contamination of Aquatic Sediments. ed. Allen, H.E. (Ann Arbor Press, Ann Arbor, MI, 1995), p. 81.Google Scholar
59. Grossi, P.R., Sparks, D.L., Ainsworth, C.C., Envir. Sci. & Technol. 28, 1422 (1994).Google Scholar
60. Bencala, K.E., Jackman, A.P., Kennedy, V.C., Avanzino, R.J., Zellweger, G.W., Water Resources Res. 19 (3), 725 (1983).Google Scholar
61. Skagius, K., Neretnieks, I., Water Resources Research 24 (1), 75 (1988).Google Scholar
62. Triay, I.R., Furiano, A.C., Weaver, S.C., Chipera, S. J., Bish, D.L., Comparison of Neptunium Sorption Results Using Batch and Column Techniques. Rept. LA-12958-MS (Los Alamos Natl. Laboratory, Los Alamos, NM).Google Scholar
63. Andrews, R.A. et al. , Total system Performance Assessment-1995: An Evaluation of the Potential Yucca Mountain Repository (Civilian Radioactive Waste Management System Management and Operating Contractor, Las Vegas, NV, 1995).Google Scholar
64. Bertetti, F.P., Pabalan, R.T., Turner, D.R., Almendarez, M.G., in Scientific Basis for Nuclear Waste Management XIX, eds. Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996) p. 631.Google Scholar
65. White, A.F., Peterson, M.L. in Chemical Modeling of Aqueous Systems II, eds. Melchior, D.C. and Bassett, R.L.. Am. Chem. Soc. Symp. Ser. 416, (1990), p. 461.Google Scholar
66. Wanty, R.B., Rice, C.A., Langmuir, D., Briggs, P., Lawrence, E.P. in Scientific Basis for Nuclear Waste Management XIV, edited by Abrajamo, T. Jr., and Johnson, L.H. (Mater. Res. Soc. Symp. Proc, 212, Pittsburgh, PA, 1991), p. 695.Google Scholar
67. Smith, R.W., Schafer, A.L., Tompson, A.F.B., in Scientific Basis for Nuclear Waste Management XIX, eds. Murphy, W.M. & Knecht, D.A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996), p. 693.Google Scholar
68. Tompson, A.F.B., Water Resources Res. 29 (11), 3709 (1993).Google Scholar