Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:28:53.207Z Has data issue: false hasContentIssue false

UPPER CRITICAL FIELD OF Mo-Ni HETEROSTRUCTURES

Published online by Cambridge University Press:  28 February 2011

CTIRAD UHER
Affiliation:
The University of Michigan, Ann Arbor, MI 48109
W.J. WATSON
Affiliation:
The University of Michigan, Ann Arbor, MI 48109
J.L. COHN
Affiliation:
The University of Michigan, Ann Arbor, MI 48109
IVAN K. SCHULLER
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Upper critical field and its anisotropy have been measured on two very short wavelength Mo-Ni heterostructures of different degrees of perfection, λ = 13.8Å (disordered structure) and X = 16.6Å (layered structure). In both cases the parallel critical field has an unexpected temperature dependence, a large and temperature dependent anisotropy, and over 60% enhancement over the Clogston-Chandrasekhar limit. Data are fit to the Werthamer-Helfand-Hohenberg theory and the spin-orbit scattering times are found to be 1.79 × 10−13 sec and 2 × 10−13 sec, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uher, C., Clarke, R., Zheng, G.G. and Schuller, I.K., Phys. Rev. 8 30, 453 (1984).Google Scholar
2. Clarke, R., Morelli, D.T., Uher, C., Homma, H. and Schuller, I.K., Superlattices and Heterostructures 1, 125 (1985).CrossRefGoogle Scholar
3. Khan, M.R., Chun, C.S.L., Felcher, G.P., Grimsditch, M., Kueny, A., Falco, C.M. and Schuller, I.K., Phys. Rev. B 27, 7186 (1983).Google Scholar
4. Naughton, M.J., Dickinson, S., Samaratunga, R.C., Brooks, J.S. and Martin, K.P., Rev. Sci. Instrum. 54, 1529 (1983).Google Scholar
5. Chun, C.S.L., Zheng, G.-G., Vincent, J. and Schuller, I.K., Phys. Rev. B 29, 4915 (1984).Google Scholar
6. Ruggiero, S.T., Barbee, T.W., Jr. and Beasley, M.R., Phys. Rev. Lett. 45, 1299 (1980).Google Scholar
7.For a review of this subject see Ruggiero, S.T. and Beasley, M.R., in Synthetic Modulated Structures, Academic Press, 1985, p. 365.Google Scholar
8. Saint-James, D. and DeGennes, P.G., Phys. Lett. 7, 306 (1963).Google Scholar
9. Clogston, A.M., Phys. Rev. Lett. 3, 266 (1962).Google Scholar
10. Chandrasekhar, B.S., Appl. Phys. Lett. 1, 7 (1982).Google Scholar
11. Maki, K., Phys. Rev. 148, 362 (1966).Google Scholar
12. Fulde, P. and Maki, K., Phys. Rev. 141, 275 (1966).Google Scholar
13. Werthamer, N.R., Helfand, E. and Hohenberg, P.C., Phys. Rev. 147, 295 (1966).Google Scholar
14. Lawrence, W. and Doniach, S., Proc. Xl1th Int. Conf. Low Temp. Physics, ed. by Kanda, E., Academic Press of Japan, Kyoto, 1971, p. 361.Google Scholar
15. Klemm, R.A., Luther, A. and Beasley, M.R., Phys. Rev. B 12, 877 (1975).Google Scholar
16. Fukuyama, H., Ebisawa, H. and Maekawa, S., J. Phys. Soc. Japan 53, 877 (1975).Google Scholar
17. Fulde, P., Advances in Physics 22, 667, 1973.CrossRefGoogle Scholar
18.Computer program provided by Dr. J. Quateman of the National Magnet Laboratory, MIT.Google Scholar