Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T04:10:05.155Z Has data issue: false hasContentIssue false

Uniformly-Assembled Metal Nanoparticles on Anodic Aluminum Oxide (AAO) Applied in Surface-Enhanced Raman Spectroscopy

Published online by Cambridge University Press:  25 July 2011

Zhixun Luo
Affiliation:
Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Boon H. Loo*
Affiliation:
Department of Chemistry, Towson University, Towson, Maryland 21252, USA
Jiannian Yao
Affiliation:
Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Get access

Abstract

Colloidal Au/Ag nanoparticles can be controllably assembled on anodic aluminum oxide (AAO) surfaces; monolayer coating on the membrane on AAO with smaller pores, or a nano-net arrangement along the edges of AAO with larger pores. The supported Au and Ag nanoparticles on the AAO membranes are closely packed and exhibited localized surface plasmon resonance (LSPR). Thus AAO membrane coated with Au or Ag nanoparticles is a highly surface-enhanced Raman scattering (SERS) active substrate. High quality SERS spectra were obtained using fullerene molecules C60 & C70 as the probe molecules and the filtered Au nanoparticles as the substrate. Furthermore, new SERS systems were obtained from Au nanoparticles assembled into the pores of AAO-supported fullerene nano-tubes, and the C60/C70 nano-tube arrays loaded with Au nanoparticles. The new SERS systems made use of the contributions from AAO, the LSPR of the Au nanoparticles, and a uniform assembly of the probe molecules in the nanostructures. These approaches have also been applied to small organic molecule systems using Ag nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Masuda, H. and Fukuda, K., Science 268, 1466 (1995).Google Scholar
2. Brolo, A. G., Arctander, E., Gordon, R., Leathem, B. and Kavanagh, K. L., 4, 2015 (2004).Google Scholar
3. Rycenga, M., McLellan, J. M. and Xia, Y., Adv. Mater. 20, 2416 (2008.Google Scholar
4. Shevchenko, E. V., Ringler, M., Schwemer, A, Talapin, D. V., Klar, T. A., Rogach, A. L., Feldmann, J. and Alivisatos, A. P., J. Am. Chem. Soc. 130(11), 3274 (2008).Google Scholar
5. Li, C. and Qi, L., Angew. Chem. Int. Ed. 47, 2388(2008).Google Scholar
6. Nicewarner-Pena, S. R., Greeman, R. G., Reiss, B. D., He, L., Pena, D. J., Walton, I. D., Cromer, R., Keating, C. D. and Natan, M. J., Science 294, 137 (2000).Google Scholar
7. Liu, H., Li, Y., Jiang, L., Luo, H., Xiao, S., Fang, H., Li, H., Zhu, D., Yu, D., Xu, J., and Xiang, B., J. Am. Chem. Soc. 124, 13370 (2002)Google Scholar
8. Menon, V. P. and Martin, C. R., Anal. Chem. 67, 1920 (1995).Google Scholar
9. Yanagishita, T., Sasaki, M., Nishio, K. and Masuda, H., Adv. Mater. 16, 429 (2004).Google Scholar
10. Rahman, S. and Yang, H., Nano Lett. 3, 439 (2003).Google Scholar
11. Jia, F. and Wang, W., Chin. J. Power sour. 28, 569 (2004).Google Scholar
12. Ba, L. and Li, W. S., J. Phys. D: Appl. Phys. 33, 2527 (2000).Google Scholar
13. Jessensky, D., Müller, F. and Gösele, U., Appl. Phys. Lett. 72, 1173 (1998); H. Masuda et al., 78, 826 (2001). Google Scholar
14. Chen, B. S., Xu, Q. L., Zhao, , Zhao, X. L., Zhu, X.G., Kong, M.G.and Meng, G. W., Adv. Func. Mater. 20, 3791 (2010).Google Scholar
15. Yi, J. B., Pan, H., Lin, J. Y., Ding, J., Feng, Y. P., Thongmee, S., Liu, T., Gong, H., and L. Adv. Mater. 20, 1170 (2008).Google Scholar
16. Luo, Z., Peng, A., Fu, H., Ma, Y., Yao, J. and Loo, B. H., J. Mater. Chem. 18, 133 (2008).Google Scholar
17. Sui, Y. C. et al. , J. Phys. Chem. B 105, 1523 (2001).Google Scholar
18. Guo, D. L., Fan, L. X., Sang, J. P., Liu, Y. F., Huang, S. Y. and Zou, X. W., Nanotechnol. 18, (2007).Google Scholar
19. Masuda, H., Asoh, H., Watanabe, M., Nishio, K., Nakao, M. and Tamamura, T., Adv. Mater. 13, 189 (2001).Google Scholar
20. Aroca, R., Surface-Enhanced Vibrational Spectroscopy (Wiley, 2006).Google Scholar
21. Kneipp, K., Moskovits, M. and Kneipp, H., Surface-Enhanced Raman Scattering (Springer, Berlin, 2006).Google Scholar
22. Le Ru, E. C. and Etchegoin, P. G., Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).Google Scholar
23. Xu, H., Surface Plasmon Photonics (VDM Verlag Dr. Muller, 2009).Google Scholar
24. Etchegoin, P. G. and Ru, E. C. L., Anal. Chem. 82, 2888 (2010).Google Scholar
25. Jin, R., Angew. Chem. Int. Ed. 49, 2826 (2010).Google Scholar
26. Moskovits, M., Rev. Mod. Phys. 57, 783 (1985).Google Scholar
27. Luo, Z., Zhao, Y., Yang, W., Peng, A., Ma, Y., Fu, H. and Yao, J., J. Phys. Chem. A 113, 9612 (2009).Google Scholar
28. Lee, P. C. and Meisel, D., J. Phys. Chem. 86, 3391 (1982).Google Scholar
29. Sutherland, W. S. and Winefordner, J. D., J. Colloid Interf. Sci. 148, 129 (1992).Google Scholar
30. Frens, G., Nature Phys. Sci. 241, 20 (1973).Google Scholar
31. Luo, Z., Liu, Y., Kang, L., Wang, Y., Fu, H., Ma, Y., Yao, J. and Loo, B. H., Angew. Chem. Int. Ed. 47, 8905 (2008).Google Scholar