Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T19:49:56.197Z Has data issue: false hasContentIssue false

Ultra-high Molecular Weight Polyethylene /Graphite Nanocomposites Prepared by High-energy Cryomilling.

Published online by Cambridge University Press:  07 November 2013

Sofía Vazquez-Rodriguez
Affiliation:
Universidad Autónoma de Nuevo León, FIME, San Nicolas de los Garza, N. L., Mexico. Universidad Autónoma de Nuevo Leon, CIIDIT, Apodaca, N. L., Mexico.
Gloria E. Rodríguez-Vázquez
Affiliation:
Universidad Autónoma de Nuevo León, FIME, San Nicolas de los Garza, N. L., Mexico. Universidad Autónoma de Nuevo Leon, CIIDIT, Apodaca, N. L., Mexico.
Selene Sepulveda-Guzman
Affiliation:
Universidad Autónoma de Nuevo León, FIME, San Nicolas de los Garza, N. L., Mexico. Universidad Autónoma de Nuevo Leon, CIIDIT, Apodaca, N. L., Mexico.
Martín E. Reyes-Melo
Affiliation:
Universidad Autónoma de Nuevo León, FIME, San Nicolas de los Garza, N. L., Mexico. Universidad Autónoma de Nuevo Leon, CIIDIT, Apodaca, N. L., Mexico.
Aaron Morelos-Gomez
Affiliation:
Faculty of Engineering, Shinshu University, Wakasato, Japan.
Rodolfo Cruz-Silva
Affiliation:
Research Center for Exotic Nanocarbons (JST), Shinshu University, Wakasato, Japan.
Mauricio Terrones
Affiliation:
Research Center for Exotic Nanocarbons (JST), Shinshu University, Wakasato, Japan. Department of Physics, The Pennsylvania State University, University Park, PA, United States. Department of Materials Science and Engineering & Materials Research Institute, The Pennsylvania State University, University Park, PA, United States.
Get access

Abstract

Ultra-high molecular weight polyethylene/graphite nanocomposites were prepared by high-energy cryogenic milling followed by syntering. Microstructure changes shows that graphite was reduced to graphite nanoplatelets by high-energy cryomilling and partial exfoliation of graphite to few layered graphene nanoplatelets occurred in a small extent. The resulting nanocomposites revealed high electrical conductivity and good mechanical performance. Thermal characterization of the nanocomposites was also carried out by differential scanning calorimetry.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wakabayashi, K., Pierre, C., Dikin, D. A., Ruoff, R. S., Ramanathan, T., Brinson, L. C. and Torkelson, J. M., Macromolecules 41, 19051908 (2008)CrossRefGoogle Scholar
Hubert, P. J., Kathiresan, K. and Wakabayashi, K., Polym. Eng. and Sci. 51, 22732281 (2011)CrossRefGoogle Scholar
Wakabayashi, K., Brunner, P. J., Masuda, J., Hewlett, S. A. and Torkelson, J. M., Polymer 51, 55255531 (2010)CrossRefGoogle Scholar
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T. and Ruoff, R. S., Nano Letters 442, 282286 (2006)Google Scholar
Fouada, H., Elleithy, Rabeh, J Mech Behav Biomed 4, 13761383 (2011)CrossRefGoogle Scholar
Sui, G., Zhong, W.H., Ren, X., Wang, X.Q., Yang, X.P., Mate Chem and Phy 115, 404412 (2009)Google Scholar