Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T00:11:30.996Z Has data issue: false hasContentIssue false

Ultra-Fine ZnO Nanobelts and their Photoluminescence Emission

Published online by Cambridge University Press:  01 February 2011

Aurangzeb Khan
Affiliation:
Department of Physics and Astronomy and CMSS Program, Ohio University, Athens OH 45701
Martin E Kordesch
Affiliation:
Department of Physics and Astronomy and CMSS Program, Ohio University, Athens OH 45701
Get access

Abstract

Ultra-Fine ZnO nanobelts are grown via thermal evaporation and condensation method without the use of any catalyst on the substrates. These nanobelts have an average width of about 5.8 nm. Photoluminescence spectra reveal that there is a blue shift in the near band edge ultra violet emission from 381 nm to 367 nm equal to 124 meV. These ultra-fine nanobelts have been studied for size induced optical and electrical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrerences

1 Morales, M., Lieber, C. M, Science 1998, 279, 208.Google Scholar
2 Fasol, G., Science 1996 272, 1751.Google Scholar
3 Wu, Y., Yan, H, yang, P., Chem. Eur. J. 2002, 8, 1260.Google Scholar
4 Yu, D. P, Lee, C. S., Bello, I., Sun, X. S., Tang, Y. H., Zhou, G.W., Bai, Z. G., Zhang, Z., Feng, S. Q., Solid State Commun. 1998, 105, 403.Google Scholar
5 Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J, Saykally, R., Morris, N., Phan, J, He, R, an H, J, Choi Adv. Funct. Mater. 2002 12, 322.Google Scholar
6 Hu, J., Ouyang, M., Yang, P., Lieber, C. M., Nature 1994, 4, 399.Google Scholar
7 Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C.M., Nature 2001, 409, 66.Google Scholar
8 Chen, X., Xu, J, Wang, R. M and Yu, Dapeng, Adv Mater. 2003, 15, 419.Google Scholar
9 Huang, Y., Duan, X.F., Cui, Y., Lauhon, J., Kim, K.-H., Lieber, C.M., Science 2001, 294, 1313.Google Scholar
10 Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Ruso, R., Yang, P., Science 2001, 292, 1897.Google Scholar
11 Cheng, G. S., Zhang, L.D., Zhu, Y., Fei, G. T., Li, L., Mo, C. M., Mao, Y.Q., Apl. Phys. Let. 1999, 75, 2455.Google Scholar
12 Wang, filmy. G, Lau, S.P, Zhang, X.H, Hng, H.H, Lee, H.W., Lee, S.F., Yu, S.F. and Tay, B.K, J. crystal growth 2003, 259, 335.Google Scholar
13 Gudiksen, M. S.; Wang, J.; Lieber, C. M. J.Phys. Chem. B 2001, 105, 4062.Google Scholar
14 Ma, D.D. D.; Le, C. S.; Au, F. C., , K.; Tong, S. Y.; Le, S. T. Science 2003, 299, 1874.Google Scholar
15 Wang, X., Ding, Y, Summer, C. J., and Wang, Z. L., J. Phys. Chem. B 2004, 108, 8773.Google Scholar