Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:24:56.897Z Has data issue: false hasContentIssue false

Ultrafast Dynamics of Shock Waves and Shocked Energetic Materials

Published online by Cambridge University Press:  10 February 2011

David E. Hare
Affiliation:
School of Chemical Sciences, University of Illinois, Urbana, IL 61801, Correspondence to Dana D.Dlott, Box 37 Noyes Lab, 505 S. Mathews Ave., Urbana, IL 61801, d-dlott @ UIUC.EDU
I-Y. Sandy Lee
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Jeffrey R. Hill
Affiliation:
School of Chemical Sciences, University of Illinois, Urbana, IL 61801, Correspondence to Dana D.Dlott, Box 37 Noyes Lab, 505 S. Mathews Ave., Urbana, IL 61801, d-dlott @ UIUC.EDU
Jens Franken
Affiliation:
School of Chemical Sciences, University of Illinois, Urbana, IL 61801, Correspondence to Dana D.Dlott, Box 37 Noyes Lab, 505 S. Mathews Ave., Urbana, IL 61801, d-dlott @ UIUC.EDU
Honoh Suzuki
Affiliation:
Department of Chemistry, Kyushu University, Fukuoka 812, Japan
Bruce J. Baer
Affiliation:
Department of Chemistry, University of California, Riverside, CA 92521
Eric L. Chronister
Affiliation:
Department of Chemistry, University of California, Riverside, CA 92521
Dana D Dlott
Affiliation:
School of Chemical Sciences, University of Illinois, Urbana, IL 61801, Correspondence to Dana D.Dlott, Box 37 Noyes Lab, 505 S. Mathews Ave., Urbana, IL 61801, d-dlott @ UIUC.EDU
Get access

Abstract

Experimental measurements of material effects induced by the passage of sharp shock fronts require techniques which provide high temporal resolution and high spatial resolution. Since typical shock velocities are a few microns per nanosecond, sub-nanosecond probing requires sub-micron spatial resolution. In our experiments, the required temporal resolution is furnished using picosecond laser generated shock waves and picosecond spectroscopy. The spatial resolution is furnished by engineering nanometer scale structures into our shock target arrays. In one technique, absorption transients in the spectrum of a thin layer of molecules, termed an optical nanogauge, are investigated. Shock-induced molecular energy transfer processes are observed in condensed matter for the first time. In a second technique, sub-micron particles of an energetic material are shocked and probed using ps coherent Raman spectroscopy. This probing technique permits the instantaneous measurement of the temperature, pressure and composition of an energetic material under dynamic shock loading.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, e.g., Huston, A. L., Justus, B. L. and Campillo, A. J., Chem. Phys. Lett. 118, 267 (1985); B. L.Justus, A. L.Huston and A. J.Campillo, 128, 274 (1986); X. Z.Lu, R.Rao, B. Willman, S.Lee, A. G.Doukas, and R. R.Alfano, Phys. Rev. B, 35, 7515 (1987); K. P. Leung, S. S.Yao, A. G.Doukas, R. R.Alfano, and P.Harris, Phys. Rev. B31, 942 (1985).Google Scholar
2. Zel'dovich, Y. B. and Raiser, Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, (Academic Press, New York, 1966), Vols. 1 and 2.Google Scholar
3. LASL Shock Hugoniot Data, Marsh, S. P., Ed. (University of California, Berkeley, 1980).Google Scholar
4. Hare, D. E., Franken, J. and Dlott, D. D., Chem. Phys. Lett. 244, 224 (1995).Google Scholar
5. Califano, S., Schettino, V., and Neto, N., Lattice Dynamics of Molecular Crystals, (Springer,Berlin, 1981).Google Scholar
6. Pertsin, A. J. and Kitaigorodsky, A. I., The Atom-atom Potential Method: Applications to Organic Molecular Solids, (Springer-Verlag, Berlin, 1987).Google Scholar
7. Pastine, D. J., Edwards, D. J., Jones, H. D., Richmond, C. T. and Kim, K., in High-Pressure Science and Technology, v. 2, edited by Timmerhaus, K. D. and Barber, M. S. (Plenum, New York, 1979), p. 364.Google Scholar
8. Coffey, C. S., and Toton, E. T., J. Chem. Phys. 76, 949 (1982); F. J. Zerilli,; and E. T. Toton, Phys. Rev. B 29, 5891 (1984).Google Scholar
9. Bardo, R. D., Int. J. Quantum Chem. Symp. 20, 455 (1986).Google Scholar
10. Dlott, D. D. and Fayer, M. D., J. Chem. Phys. 92, 3798 (1990); A.Tokmakoff, M. D. Fayer, and D. D.Dlott, J. Phys. Chem. 97, 1901 (1993).Google Scholar
11. Chen, S., Hong, X., Hill, J. R. and Dlott, D. D., J. Phys. Chem. 99, pp. 45254530 (1995).Google Scholar
12. Lee, I-Y. S., Hill, J. R., Suzuki, H., Baer, B. J., Chronister, E. L., and Dlott, D. D., J. Chem. Phys (in press).Google Scholar
13. Chen, S., Lee, I-Y. S., Tolbert, W., Wen, X. and Dlott, D. D., J. Phys. Chem., 96, pp. 71787186 (1992).Google Scholar
14. Hare, D. E., Franken, J. and Dlott, D. D., J. Appi. Phys. 77, pp. 59505960 (1995).Google Scholar
15. Hare, D. E. and Dlott, D. D., Appl. Phys. Lett., 64, pp. 715717 (1994).Google Scholar
16. Trott, W. M. and Renlund, A. M., I. Phys. Chem. 92, 5921 (1988); S. K.Satija, B. Swanson, J.Eckert and J. A.Goldstone, J. Phys. Chem. 95, 10103 (1991).Google Scholar